Грузовые автомобили, тракторы, пневмоколесные тягачи
Грузовыми автомобилями, тракторами, пневмоколесными тягачами и созданными на их основе прицепными и полуприцепными транспортными средствами общего и специального назначения осуществляются основные перевозки строительных грузов. Кроме того, автомобили, тракторы и тягачи используются как тяговые средства прицепных и полу — прицепных дорожно-строительных машин, а также в качестве базы для кранов, экскаваторов, бульдозеров, погрузчиков, бурильных установок, коммунальных и других машин.
Автомобили, тракторы, тягачи изготовляются серийно, поэтому многие их сборочные единицы широко используются в конструкциях различных дорожно-строительных машин.
Грузовые автомобили. Основными частями грузового автомобиля массового производства являются двигатель /, кузов 2 и шасси 3 (рис. 6.1). Шасси включает силовую передачу (трансмиссию), несущую раму, на которой установлены двигатель, кабина, передний и задние мосты с пневмоколесами, упругая подвеска, соединяющая мосты с рамой, механизм управления и электрооборудование. По конструкции кузова различают автомобили общего назначения и специализированные. Автомобили общего назначения имеют кузов в виде неопрокидывающейся
открытой платформы с откидными бортами для перевозки любых видов грузов, специализированные — для перевозки определенного вида груза. Кроме того, грузовые автомобили классифицируются по типу двигателя, проходимости, грузоподъемности и другим факторам. На грузовых автомобилях применяют поршневые двигатели внутреннего сгорания, работающие на бензине или газе (карбюраторные), на тяжелом топливе (дизельные), газотурбинные. Дизельные двигатели получили преимущественное распространение, газотурбинные применяют на автомобилях очень большой грузоподъемности. В зависимости от грузоподъемности мощность двигателей автомобилей общего назначения 60-220, а автомобилей — тягачей достигает 500 кВт.
По проходимости автомобили делятся на дорожные, рассчитанные для эксплуатации по всем дорогам общей дорожной сети, повышенной и высокой проходимости — по всем видам дорог различного состояния и внедорожные — (карьерные). Автомобили повышенной и высокой проходимости в зависимости от типа движителя разделяются на колесные, колесно-гусеничные, на воздушной подушке и автомобили-амфибии. Внедорожные автомобили применяют на стройках и разработках полезных ископаемых открытым способом и используют на дорогах со специальным основанием.
Главным параметром, определяющим конструкцию автомобиля, является нагрузка на одиночную ось. Правилами дорожного движения установлены предельные нагрузки на одиночную ось автомобиля — 100 кН для дорог с усовершенствованным покрытием и 60 кН для общей дорожной сети. Эти требования не распространяются на внедорожные автомобили. Для обеспечения высокой проходимости и требований по нагрузке на ось бортовые автомобили и седельные тягачи выпускаются с двумя, тремя ведущими осями и более (рис. 6.1, б, в). Такие автомобили получили большое распространение. Прицепы и полуприцепы разделяются на прицепы, буксируемые автомобилем с помощью дышла (одно-, двух- и многоосные), прицепы-роспуски для перевозки длинномерных грузов, полуприцепы, буксируемые седельными тягачами. Седельные тягачи изготовляют на базе шасси бортового автомобиля, но с укороченной базой (рис. 6.1, в). На раме 3 такого тягача укрепляется опорная плита с седельно-сцепным устройством 4, которое воспринимает нагрузку от полуприцепа и передает ему тяговое усилие, развиваемое двигателем автомобиля.
Рис. 6.1. Грузовые автомобили общего назначения: а — с открытой платформой и бортами; б — повышенной проходимости; в — тягач с седельно-сцепным устройством. |
ДОРОЖНО СТРОИТЕЛЬНЫЕ МАШИНЫ |
По грузоподъемности грузовые автомобили разделяются на автомобили малой, средней, большой и особо большой (внедорожные) грузоподъемности. Максимальная грузоподъемность наиболее распро
страненных грузовых автомобилей с бортовой платформой составляет: типа ЗИЛ — 6500 кг, типа КамАЗ — 8000-11000 кг, типа МАЗ — 12000 кг, типа КрАЗ — 14500 кг.
На рис. 6.2 приведены схемы силовых передач с одной и несколькими ведущими осями. Крутящий момент от двигателя / (рис. 6.2. а) к ведущим колесам 8 передается через силовую передачу. Она состоит из постоянно замкнутой фрикционной муфты (сцепления) 2, выключение которой позволяет отключать двигатель при переключении передач, ступенчатой коробки перемены передач 3 с переменным передаточным числом для согласования крутящего момента на колесах 8 с моментом сопротивления движению и обеспечения движения автомобиля задним ходом, карданного вала 4, главной передачи 5, состоящей из двух конических зубчатых колес и увеличивающей крутящий момент на ведущих колесах, дифференциала 6, позволяющего колесам вращаться с различной частотой на криволинейных участках пути, и двух полуосей 7, передающих вращение закрепленным на них колесам. Главная передача, дифференциал и полуоси, закрепленные в кожух, называются ведущим мостом. Дифференциал устроен следующим образом (рис. 6.2, г). На внутренних концах полуосей 7 закреплены полуосевые конические шестерни 15. Концы полуосей с полуосевыми шестернями входят в коробку дифференциала 14. К коробке дифференциала прикреплена ведомая шестерня 5, с которой сцеплена ведущая шестерня главной передачи. В коробке установлены шестерни-сателлиты 13, которые сцеплены одновременно с обеими полуосевыми шестернями и могут вращаться в цапфах. При прямолинейном движении автомобиля по ровной дороге полуоси с шестернями будут вращаться с одинаковой скоростью, равной скорости коробки, а шестерни-сателлиты остаются неподвижными относительно своей оси. При движении автомобиля по криволинейному участку дороги сателлиты перекатываются по замедлившей свое вращение полуосевой шестерне, а вторая полуосевая шестерня за счет вращения сателлитов начнет вращаться быстрее. В результате колесо, катящееся по внутренней кривой, будет вращаться медленнее, чем колесо, катящееся по внешней кривой и проходящее за одно и то же время больший путь.
Автомобиль оборудуется тормозной системой для снижения скорости и остановки машины и рулевой системой для изменения направления движения посредством поворота передних управляемых колес 9. На тяжелых машинах рулевой механизм оснащается гидроусилителем, снижающим усилие на рулевом колесе.
На рис. 6.2, б показана схема силовой передачи трехосного автомобиля с двумя ведущими мостами 10, (колесная формула 6×4), а на рис.
6.2, в — с тремя ведущими мостами (колесная формула 6×6), передний мост 12 является одновременно управляемым и ведущим. Движение к ведущим мостам передается посредством карданных валов от коробки
перемены передач через раздаточную коробку 11, позволяющую включать передний ведущий мост при преодолении трудных участков пути во время движения по проселочным дорогам и бездорожью.
Рис. 6.2. Силовые передачи грузовых автомобилей: а — с колесной формулой 4×2; б — с колесной формулой 6×4; в — с колесной формулой 6×6; г — схема дифференциала. |
Тракторы гусеничные и колесные (рис. 6.3). Их используют для перемещения тяжелых грузов по грунтовым и временным дорогам. Агрегатируются они с бортовыми и саморазгружающимися прицепами, а также с прицепными и навесными строительными машинами (скреперами, бульдозерами, экскаваторами, кранами-трубоукладчиками и др.). Гусеничные тракторы обладают малой нагрузкой на грунт и большой силой тяги. Поэтому они имеют более высокую проходимость, чем колесные. Максимальная скорость их перемещения составляет 12 км/ч. Колесные тракторы более маневренны, имеют большую транспортную скорость — 40 км/ч. Давление на грунт колесных машин 0,2-0,35 МПа, гусеничных — 0,1 МПа. Главным параметром тракторов является максимальное усилие на крюке, по которому их разделяют на классы. Максимальное усилие на крюке измеряют при скорости 2,6-3 км/ч для гусеничных и 3,0-3,5 км/ч — для колесных. Усилие на крюке гусеничных тракторов примерно равно их массе, а колесных — 0,5-0,6 от массы.
Рис. 6.3. Тракторы: а — гусеничный с передним расположением двигателя; б — гусеничный с задним расположением двигателя; в — пневмоколесный с передними управляемыми колесами; г — с шарнирно сочлененной рамой. |
Промышленностью выпускаются тракторы сельскохозяйственного типа классов тяги 6, 9, 14, 20, 30, 40, 50, 60, 90, 150 и 250 кН и промышленного типа классов тяги 100, 150, 200, 250, 350, 500 кН. Тракторы промышленного типа изготовляются различных модификаций, т. е. с учетом установки на них погрузочного, бульдозерного, рыхлительного, кранового и другого оборудования. Мощность двигателей тракторов достигает 800 кВт, а иногда и более. Трактор состоит из рамы, силовой передачи, гусеничного или колесного движителя и управления. Кроме того, все тракторы комплектуются гидравлической системой для привода навесного или прицепного рабочего оборудования.
У пневмоколесных тракторов с шарнирно-сочлененными полура — мами (рис. 6.3, г) каждая из полурам опирается на ведущий и управляє-
мый мосты. Поворот передней полурамы относительно задней осуществляется с помощью двух гидроцилиндров на угол до 40° в каждую сторону. Такие тракторы обладают большей маневренностью по сравнению с тракторами с передней управляемой осью. Силовая передача трактора существенно отличается от силовой передачи автомобиля. В ней отсутствует дифференциал, а поворот машины осуществляется торможением одной из гусениц. Силовые передачи тракторов выполняются механическими, гидромеханическими и электрическими.
В состав механической силовой передачи гусеничного трактора (рис. 6.4, а) входят: дисковая фрикционная муфта сцепления 2, коробка перемены передач 3, карданный вал 5, главная передача 6, бортовые фрикционы 7 с ленточными тормозами 5, бортовые редукторы 9, соединенные с ведущими звездочками гусениц 10. На гусеничной раме 4 установлены ведомые звездочки 11 с натяжным устройством гусеничной цепи. Бортовые редукторы увеличивают крутящий момент на ведущих звездочках. Бортовые фрикционы представляют собой многодисковые фрикционные муфты, которые в замкнутом (включенном) состоянии обеспечивают прямолинейное движение трактора. Изменение направления движения достигается частичным или полным выключением одного из бортовых фрикционов с одновременным торможением его ведомых дисков с помощью ленточного тормоза. Ленточные тормоза используются также для торможения обеих гусениц при движении на уклонах и как стояночные тормоза. Для плавного бесступенчатого регулирования скорости в широком диапазоне в зависимости от внешней нагрузки силовая передача дополняется гидравлическим ходоуменыиителем, позволяющим работать на пониженных (до 1 км/ч) скоростях.
Рис. 6.4. Силовые передачи тракторов: а — гусеничного; б — колесного. |
В состав механической передачи колесного трактора (рис. 6.4, б) с передним расположением двигателя / входят фрикционная муфта сцепления 2, карданный вал 3, коробка перемены передач 4, главная передача 5, бортовые фрикционы 6 с ленточными тормозами 7, бортовые редукторы 8, передающие вращение пневматическим колесам 9.
В силовых передачах гусеничных и колесных тракторов, одно — и двухосных тягачей, специальных шасси одноковшовых погрузчиков, самоходных кранов автомобильного типа широко применяют гидродинамические передачи.
При больших сопротивлениях движению (при трогании с места, движении на подъем или в трудных дорожных условиях) используется способность гидротрансформатора увеличивать крутящий момент двигателя с высоким коэффициентом трансформации. По мере снижения сопротивления движению постепенно снижается трансформация момента, плавно возрастает скорость ведущих колес, а работа трансформатора переходит в режим с более высоким кпд. При этом переключение передач осуществляется автоматически, т. е. высшие передачи включаются только тогда, когда вторичный вал достигает определенной частоты вращения. При этом двигатель работает в режиме максимальной мощности, а переключение передач происходит без разрыва крутящего момента. Отсутствие жесткой кинематической связи двигателя с ведущими звездочками снижает динамические нагрузки на двигатель, повышает долговечность двигателя и силовой передачи.
В гусеничных тракторах с электрической силовой передачей момент ведущим звездочкам гусениц сообщается тяговым электродвигателем постоянного тока через бортовые фрикционы и редукторы. Тяговый электродвигатель получает питание от генератора, вращаемого дизелем трактора. Система привода дизель-генератор-двигатель значительно упрощает кинематическую схему силовой передачи (отсутствуют коробка перемены передач, карданные валы), а главное — обеспечивает в широких пределах бесступенчатое регулирование скорости движения и момента в зависимости от внешней нагрузки. Гидромеханическая и электрическая силовые передачи наиболее полно отвечают режиму работы тракторов с прицепным и навесным рабочим оборудованием строительных машин.
Пневмоколесные тягачи. Такие одно — и двухосные тягачи предназначены как базовые машины для работы с различного рода прицепным (одноосные) и навесным и прицепным (двухосные) рабочим оборудованием строительных машин (рис. 6.5). Пневмоколесные тягачи обла
дают высокими тяговой характеристикой, транспортными (до 50 км/ч и более) скоростями, большим диапазоном рабочих скоростей, хорошей маневренностью, что способствует достижению высокой производительности строительных машин, создаваемых на их базе.
Рис. 6.5. Прицепное и навесное оборудование одно — и двухосных тягачей: а — скрепер; б — землевоз; в — кран; г — цистерна для цемента и жидкостей; д — тяжеловоз; е — кран-трубоукладчик; ж — траншейный экскаватор; з — корчеватель; и — бульдозер; к — рыхлитель; л — погрузчик. |
Пневмоколесные тягачи собирают из узлов и деталей серийного производства тракторов и тяжелых автомобилей при широкой степени унификации, что делает их конструкцию более долговечной. Мощность дизелей тягачей достигает 900 кВт при нагрузке на ось 750 кН и более, что обеспечивает реализацию одного из главных направлений развития строительной техники — создания машин большой единичной мощности.
Одноосный тягач (рис. 6.6, а) состоит из шасси, на котором установлены двигатель 6, силовая передача, два ведущих колеса, кабина и опорно-сцепное устройство. Опорно-сцепное устройство выполнено в виде стойки 2, которая может качаться вокруг продольной горизонтальной оси, закрепленной в раме тягача, что позволяет полуприцепу перекашиваться относительно тягача в вертикальной плоскости. Соединяется полуприцеп с тягачом вертикальным шкворнем 3. Поворот тягача относительно оси полуприцепа обеспечивается двумя гидроцилиндрами 4 на угол до 90° в обе стороны. Гидромеханическая силовая передача (рис. 6.6, б) включает в себя раздаточную коробку 7, гидротрансформатор 8, коробку перемены передач 9, карданные валы 10 и 12, мост с главной передачей и дифференциалом 11, полуосями 13 и планетарные редукторы 14, встроенные в ступицы ведущих колес. Оба ведущих колеса являются одновременно и управляемыми. Коробку перемены передач и гидротрансформатор часто монтируют в одном корпусе, что делает конструкцию более компактной. От раздаточной коробки через вал 12 приводится в действие один или несколько масляных насосов 5, обеспечивающих работу исполнительных органов полуприцепной машины. Управление тягачом и прицепным оборудованием осуществляется гидрораспределителем 1.
Двухосные тягачи состоят из двух шарнирно-сочлененных полу — рам. Поворот полурам, так же как и у одноосного тягача, осуществляется с помощью двух гидроцилиндров двустороннего действия. Тягачи имеют один или два ведущих моста, одну или две двигательные установки. Силовая передача к ведущим колесам аналогична рассмотренной выше. Коробки перемены передач одно — и двухосных тягачей трехступенчатые при одинаковых скоростях движения передним и задним ходом. Последнее особенно важно для машин цикличного действия, требующих особой маневренности при частом реверсировании рабочих движений (одноковшовые фронтальные погрузчики, бульдозеры и др.).
В последние годы одно — и двухосные тягачи комплектуются мотор — колесами с шинами до 3 м в диаметре и шириной более 1 м с автоматически изменяющимся в зависимости от дорожных условий давлением воздуха.
Рис. 6.6. Одноосный тягач; а — общий вид; б — кинематическая схема; 1 — распределитель; 2 — стойка; 3 — шкворень; 4 — гидроцилиндры; 5 — насос; 6 — двигатель4 7 — раздаточная коробка; 8 — гидротрансформатор; 9 — коробка перемены передач; 10 — карданный вал; И ~ дифференциал; 12 — карданный вал; 13 — поршень; 14 — планетарный редуктор. |
Мотор-колесо представляет собой самостоятельный агрегат с гидравлическим или электрическим двигателем и планетарным редуктором, встроенным в колесо. Рабочие двигатели питаются от масляных насосов или генератора, приводимых в действие основным двигателем тягача. Система управления двигателями мотор-колес позволяет каждому из них сообщать различные по величине моменты и частоту вращения, а при разворотах — и направление вращения, что особенно важно при работе в сложных дорожных условиях.