Архивы за 28.09.2014
Электрические передачи
На крупных дорожных машинах и базовых тягачах, мощность силовой установки которых составляет 100-150 кВт и более, могут применяться электрические передачи постоянного и переменного тока. Эти передачи состоят из генератора и одного или нескольких электродвигателей. Генераторы, как правило, приводятся дизельными двигателями и образуют с ними один агрегат. Режимы работы генератора согласовываются с характеристикой приводного двигателя в направлении полного использования мощности силовой установки даже при изменении внешней нагрузки в широком диапазоне. Эта задача успешно решается в случае, когда электрическая передача позволяет бесступенчато регулировать скорость ведомого элемента, при этом выполняется условие
Nrl = М. со= const. (3.4)
д ном 2 2
где М2 и а>2 крутящий момент и угловая скорость ведомого звена передачи; — номинальная мощность приводного двигателя.
ДОРОЖНО-СТРОИТЕЛЬНЫЕ МАШИНЫ |
В электрических передачах постоянного тока изменением угловой скорости и крутящего момента электродвигателя производится регулированием тока возбуждения. При этом применяют схемы с параллельным, последовательным и смешанным включением обмоток возбуждения электромашин. В электрических передачах переменного тока эта же задача решается введением преобразователей частоты питания электродвигателей. Регулируемые электропередачи сложны и обладают большой массой. Поэтому чаще применяют более простые и дешевые нерегулируемые электропередачи переменного тока, хотя по своим характеристикам они близки к механическим передачам.
Механические характеристики электропередач отображают зависимости угловой скорости 0)} и мощности /V, от крутящего момента М9, на валу электродвигателя. Различают сверхжесткие, жесткие и мягкие характеристики электродвигателей. Сверхжесткой характеристикой обладает синхронный электродвигатель, питаемый электроэнергией постоянной частоты, и специальные двигатели постоянного тока с параллельным возбуждением и автоматическим регулированием угловой скорости. Жесткая характеристика имеет небольшое падение угловой скорости (5- Ю%) при изменении крутящего момента на валу электродвигателя от нуля до номинала. Эта характеристика наблюдается у электродвигателей постоянного тока с параллельным возбуждением и у асинхронных электродвигателей с малым сопротивлением в цепи ротора. Мягкая
характеристика имеет большое падение угловой скорости (20% и выше) при изменении нагрузки от нуля до номинала. Такую характеристику имеют электродвигатели постоянного тока последовательного или смешанного возбуждения, электродвигатели параллельного возбуждения с большим сопротивлением в цепи якоря, система генератор-двигатель с трехобмоточным генератором, асинхронные электродвигатели с большим сопротивлением в цепи ротора, специальные системы. Графическое изображение механических характеристик электродвигателей разной степени жесткости приведено на рис. 3.2.
Рис. 3.2. Механические характеристики электропередач: 1 — сверхжесткая;
2 — жесткая: 3 — мягкая
Силовое оборудование машин
Чтобы машина работала, к ее рабочим органам нужно подвести механическую энергию. Вырабатывается эта энергия силовым оборудованием, а передается — трансмиссией. Совокупность силового оборудования и трансмиссии называют приводом машины. Особенности технологии производства работ, условия эксплуатации и режимы нагружения определяют требования к приводам машин. От технологии зависит последовательность включения, выключения и реверсирования движения механизмов, совмещение их действий. Условия эксплуатации — работа на открытом воздухе в любое время суток и года в различных климатических поясах и зачастую вдали от населенных мест — определяют требования высокой надежности и ремонтопригодности, доступности мест смазки, возможности контроля и регулировки, работоспособности при больших поперечных и продольных уклонах и в условиях бездорожья. Хороши в эксплуатации конструкции, в которых широко использованы базовые машины и стандартные узлы.
Режимы нагружения характеризуются продолжительностью непрерывной работы привода, частотой включения, закономерностями изменения внешней нагрузки и скоростью движения ведомого звена. В основные периоды времени они определяются процессами взаимодействия рабочих органов машин с обрабатываемым материалом, а в переходные — процессами разгона, торможения и реверсирования масс, их подъемом или опусканием. Предпочтение отдают таким приводам, которые обеспечивают максимальное использование установленной мощности при высоком к. п. д., хорошо воспринимают динамические нагрузки, а также легко и просто управляются и автоматизируются.
По типу и структуре силового оборудования различают приводы с первичными или вторичными двигателями, одномоторные или многомоторные. Трансмиссии могут быть однопоточными, многопоточными, механическими, гидравлическими, электрическими, пневматическими или комбинированными (гидромеханическими, электрогидравлическими и т. п.). Управление приводами бывает ручным, механизированным, автоматическим или полуавтоматическим, ступенчатым или бесступенчатым.
На дорожных машинах в основном применяются приводы с первичными двигателями, у которых образующаяся при сгорании топлива энер
гия непосредственно преобразуется в механическую работу. Машины с такими двигателями автономны, т. е. могут работать вдали от населенных пунктов и других источников энергии. К первичным двигателям относятся двигатели внутреннего сгорания и паровые машины. Из-за больших габаритов и массы, а также низкого к. п. д. паровые машины в настоящее время не применяются.
Основными параметрами двигателей внутреннего сгорания, характеризующими их работу, является мощность Nd крутящий момент Мд и угловая скорость о)й. Связь между этими параметрами представлена на рис. 3.1, из которого видно, что изменение крутящего момента от нуля до номинала соответствует изменению скорости вращения на 8-12% у дизелей и на 20% у карбюраторных двигателей. Двигатели внутреннего сгорания способны развивать крутящие моменты, превышающие номинальное значение. Однако при этом их угловая скорость резко падает. Перегрузочная способность двигателей внутреннего сгорания характеризуется коэффициентом приспосабливаемости
1.1 |
1.3 |
м. |
д ном |
(3.1) |
где М, |
и М, — максимальное и номинальное значения кру- a max о ном г J тящего момента двигателя. |
Рис. 3.1. Внешние характеристики двигателей внутреннего сгорания: 1 — дизель; 2 — карбюраторный двигатель |
Так как этот коэффициент сравнительно мал, двигатели внутреннего сгорания не могут разгоняться под нагрузкой и “глохнут” уже при скорости вращения, составляющей 50-60% от номинальной. Поэтому их следует выбирать с некоторым запасом, который характеризуется коэффициентом загрузки по мощности
N
, iv Дном
(3.2)
Д max
где N, „„и N, — максимальное и номинальное значения мощности
О fllQX и НОМ
двигателя.
Для дорожных машин принимают k = 0,75-0,9.
В качестве вторичных приводных двигателей применяются асинхронные электродвигатели, перегрузочная способность которых несколько выше, чем у двигателей внутреннего сгорания.
Трансмиссия включает одну или несколько передач, систему управления и вспомогательные средства. В приводах дорожных машин широко применяются механические передачи. Они имеют высокий к. п. д., надежны в работе и просты в обслуживании. Эти передачи состоят из зубчатых, цепных, ременных и других механизмов, которые образуют редукторы, коробки скоростей, ведущие мосты и т. п. С помощью механических передач можно подводить энергию не только к одному, а к нескольким исполнительным механизмам, реверсировать их движение и ступенчато изменять величину скорости и крутящего момента на ведомом валу.
Пренебрегая податливостью звеньев, а также влиянием люфтов в сопряжениях, полагают, что кинематические и нагрузочные параметры ведомого вала механических передач не зависят друг от друга и определяются следующими соотношениями:
<°2 = КЩ и М2 = Т) А/, — (3.3)
где крутящие моменты на входе передачи (вал приводно
го двигателя) и на выходе; ім — общее передаточное отношение механизма; Г] — общий к. п. д. передачи.
Ввиду невозможности бесступенчатого регулирования скорости вращения и крутящего момента, возникновения динамических нагрузок при колебании внешних возмущений, громоздкости и сложности конструкции, механические передачи часто заменяются комбинированными — гидромеханическими или электромеханическими.