Архивы за 16.09.2015

Специальные виды бетонов

Гидротехнический бетон. Он предназначен для конструкций, постоянно или периодически контактирующих с водой. Требова­ния к гидротехническому бетону существенно различаются в за­висимости от зоны расположения бетона в конструкции (надвод­ной, подводной, переменного уровня воды, наружной, внутрен­ней); массивности конструкции; действующего на конструкцию напора воды и др. Например, бетон зоны переменного уровня воды должен обладать особенно высокой морозостойкостью, бетон мас­сивных конструкций должен иметь пониженное тепловыделение и отвечать требованиям термической трещиностойкости, бетон напорных сооружений должен обладать особенно высокими водо­стойкостью и водонепроницаемостью.

Бетон для защиты от радиоактивного излучения. При работе ста­ционарных ядерных реакторов, ускорителей частиц, радиохими­ческих и облучающих установок несущая бетонная конструкция выполняет также функцию защиты окружающей среды от радио­активного излучения и потока нейтронов. Защита сводится к ре­шению трех задач:

1) замедление быстрых нейтронов;

2) захват промежуточных и тепловых нейтронов;

3) поглощение всех видов у-излучения, включая рассеянное излучение и у-излучение захвата, образующиеся в бетоне при вза­имодействии с ним быстрых и медленных нейтронов.

При постоянной толщине защитной конструкции поглощение у-лучей практически пропорционально плотности независимо от рода вещества. Поэтому бетоны для биологической защиты имеют плотность до 5 000… 6 000 кг/м3, что достигается применением осо­бо тяжелых заполнителей, таких как магнетит Fe304; гематит Fe203 (р = 4 500 кг/м3), бурый железняк (лимонит) 2Fe203-3H20 (р = = 3 200…4000 кг/м3), баритовые руды, содержащие до 80 % BaS04 (р = 4 Ю0…4 700 кг/м3). При применении в качестве заполнителя металлических отходов (р = 7 850 кг/м3) масса бетона может быть существенно повышена. Железные заполнители типа стальной или чугунной дроби, отходов металлообработки довольно доро­ги. Как правило, они загрязнены масляными веществами, сни­жающими сцепление с цементным камнем, и должны подвер­гаться очистке.

Эффективность замедления нейтронов обратно пропорциональ­на массовому числу элемента. При не очень больших энергиях ней­тронов отличным замедлителем является водород, который со­держится в бетоне в составе воды. Вместе с тем эффективное сече­ние захвата нейтронов ядрами водорода мало, поэтому для замед­ления нейтронов высоких энергий нужна слишком большая тол­щина защитного слоя воды. Понизить энергию быстрых нейтро­нов в результате неупругого рассеяния могут элементы со средни­ми и большими массовыми числами, например железо, барий или свинец. Эти элементы благодаря высокой плотности одновре­менно являются эффективными поглотителями у-излучения. Каж­дый акт захвата нейтронов ядрами элементов сопровождается ис­пусканием у-квантов. При захвате нейтронов ядрами водорода энер­гия у-лучей составляет 2,2 МэВ, а ядрами железа — 7,6 МэВ, что является недостатком железа как поглотителя нейтронов, испус­кающего жесткие у-лучи захвата. Из легких элементов хорошим поглотителем нейтронов является бор, который при захвате не дает жесткого у-излучения.

Таким образом, бетон для защиты от радиоактивного излуче­ния должен содержать в необходимом количестве связанную воду, легкие и тяжелые элементы, а также по возможности включать в себя такие поглотители нейтронов, как бор и литий.

Связанная вода в бетоне подразделяется на несколько катего­рий.

1. Химически связанная вода, образующая молекулы вещества — гидроокисных и комплексных соединений (удаление воды из этих соединений приводит к образованию нового вещества).

2. Кристаллизационная вода, входящая в состав кристалличе­ской решетки вещества. Удаление этой воды не меняет названия вещества, но может изменить параметры кристаллической решет­ки.

3. Адсорбционная вода, удерживаемая на поверхности частиц силами молекулярного притяжения.

4. Капиллярная вода, удерживаемая поверхностным натяжени­ем.

Бетон на портландцементе содержит связанную воду в сум­марном количестве менее 10% по массе, т. е. менее 1,4- 1022 ато­мов водорода на 1 см3. По этой причине исследовались специаль­ные цементы, связывающие большое количество воды. Система MgO — г MgCl2 + Н20 позволяет получить вяжущее, связывающее воды в 3 раза больше, чем портландцемент. Однако из-за недоста­точной прочности этот цемент, как и другие, не нашел примене­ния и основными вяжущими в бетонах для защиты от радиоак­тивного излучения остаются портландцемент и шлакопортланд­цемент, а содержание связанной воды повышают за счет введе­ния таких заполнителей, как лимонит, содержащий около 10% кристаллизационной воды, и серпентинит, содержащий около 13 % воды.

Дисперсно-армированный бетон (фибробетон). Он содержит рас­пределенные по всему объему армирующие волокна (фибры), ко­торые могут быть стальными, минеральными (стеклянными, ба­зальтовыми, шлаковыми, асбестовыми) или органическими (син­тетическими, целлюлозными, сизалевыми, бамбуковыми, трост­никовыми, джутовыми). Методы дисперсного армирования позво­ляют получить направленную или хаотичную ориентацию волокон в бетоне. Возможность хаотичного расположения волокон ограни­чена действием силы тяжести или архимедовой силы, размерами и формой бетонируемого элемента, характером заполнителей. Направ­ленная ориентация получается при использовании непрерываю- щихся нитей, жгутов, тканых и нетканых сеток, а также при виб­рировании или вращении изделия. Короткие стальные волокна мо­гут быть ориентированы с помощью магнитного поля.

Вид и назначение фибробетона определяют характер дисперс­ного армирования. Например, легкий бетон нецелесообразно ар­мировать стальными волокнами, так как его теплоизоляционные свойства будут снижены из-за высокой теплопроводности стали. Стеклянные волокна обычного состава подвергаются коррозии в бетоне на портландцементе и практически не реагируют со сре­дой гипсовых вяжущих. Стальные волокна, наоборот, заметно корродируют в материалах на основе гипса, но достаточно стойки в среде портландцемента.

Дисперсное армирование, осуществляемое путем введения фибры непосредственно в бетоносмеситель, часто приводит к снижению затрат в результате исключения арматурных работ и отказа от применения дорогих арматурных сеток и каркасов.

Дисперсное армирование обеспечивает существенное повыше­ние прочности сжатых, растянутых и изгибаемых элементов кон­струкций, увеличивает их трещиностойкость и ударную вязкость.

Прочность фибробетона зависит от прочности самих волокон, их количества и ориентации. Размеры волокон выбирают так, что­бы отношение длины к диаметру равнялось отношению предела прочности волокна при растяжении к сопротивлению выдергива­ния волокна из матрицы. В этом случае равновероятен разрыв во­локна и нарушение его сцепления с цементирующим камнем.

Жаростойкий бетон. Обычный бетон на портландцементе мо­жет выдержать температуру до 200 °С. Однако при длительном воз­действии такой температуры прочность его снижается на 25…45 %. Это можно допустить, обеспечив необходимый запас прочности. При более высокой температуре применяют специальные бето­ны, которые подразделяются на жаростойкие (выдерживающие температуру до 1 580 °С) и огнеупорные (с огнеупорностью выше 1 580 °С). Их применяют в конструкциях агрегатов и оборудования предприятий черной и цветной металлургии, теплоэнергетики, химической промышленности, керамического производства.

Жаростойкость бетона зависит от вида вяжущего и природы заполнителей. При нагреве бетона до температуры 500 °С сниже­ние прочности происходит в основном в результате несовмести­мости температурных деформаций заполнителей и цементирую­щего камня и выделения кристаллизационной воды. При более высокой температуре наблюдаются полиморфные превращения и разложение химических соединений. Так, кристаллическая струк­тура кварца при 573 °С из тригональной переходит в гексагональ­ную, а при 870 °С кварц превращается в тридимит с ромбической сингонией решетки.

При температуре выше 500 °С Са(ОН)2 в цементном камне де­гидратируется с образованием СаО. Если после этого бетон будет увлажнен, то произойдет его разрушение вследствие увеличения объема извести при взаимодействии СаО с водой. Поэтому в жа­ростойких бетонах применяют портландцемент с активной мине­ральной добавкой, кремнезем которой при температуре 700… 900 °С связывает СаО в устойчивый силикат.

В качестве вяжущих для жаростойких бетонов применяют порт­ландцемент, шлакопортландцемент, глиноземистый цемент, жид­кое стекло, фосфатные вяжущие; в качестве заполнителей — ог­неупорные материалы: бой шамотного, магнезитового, динасо­вого или керамического кирпича, хромитовую руду, базальт, ди­абаз, андезит, доменный гранулированный шлак и др. При ис­пользовании пористых заполнителей (керамзита, вспученного перлита, вермикулита) получают легкий жаропрочный бетон с уб < 1 200 кг/м3.

Портландцемент с активной минеральной добавкой и шлако­портландцемент применяются до температуры 700… 900 °С. Высо­кой огнеупорностью обладает глиноземистый цемент (1 580 °С), а высокоглиноземистый цемент характеризуется огнеупорностью — 1 740… 1 770 °С.

Несмотря на низкую собственную огнеупорность жидкосте­кольной связки (около 800 °С) бетоны на ее основе могут вы­держивать температуру до 1 600 °С, что является результатом вы­сокотемпературного взаимодействия жидкого стекла с наполни­телем. На основе жидкого стекла изготавливают бетоны трех ви­дов: кремнеземистые (заполнителями и тонкомолотыми компо­нентами являются кварцит и динас), алюмосиликатные (с ша­мотными и муллитовыми заполнителями, обеспечивающими огнеупорность до 1 600 °С) и магнезиальные (на основе перик- лазовых, периклаз-шпинелидных и магнезиально-силикатных заполнителей).

Широко распространенной основой для получения жаростой­ких бетонов являются фосфатные вяжущие системы. Фосфатное связующее получают из двух компонентов: водного раствора (чаще всего — ортофосфорной кислоты или кислых фосфатов аммо­ния, алюминия, магния) и порошкообразного минерального ком­понента, проявляющего по отношению к раствору свойства осно­вания. Таким компонентом являются различные огнеупорные ма­териалы, которые одновременно применяются и в качестве круп­ного заполнителя.

На основе молотого динаса и концентрированной ортофосфор — ной кислоты готовят динасовый бетон с огнеупорностью 1 750 °С и прочностью при сжатии до 40 МПа. На основе кварцитов, квар­цевого песка и фосфатного затворителя получают кварцевый бе­тон, который уступает динасовому в прочности (до 25 МПа) из — за полиморфных превращений кварца. Из молотого шамота на фос­фатных затворителях, часто с добавкой глинозема, готовят связу­ющее для шамотного бетона, характеризующегося огнеупорнос­тью 1 660 °С и прочностью при сжатии 40 МПа и выше. Корунд — муллитовый фосфатный бетон, состоящий из корундмуллитового шамота (95 %), глины (5 %) и фосфорной кислоты, обладает ог­неупорностью до 1 850 °С и прочностью при сжатии до 80 МПа. Для отвердевания фосфатных бетонов требуется повышение тем­пературы до 100… 600 °С.

При обычной температуре отвердевает магнезиальный фосфат­ный бетон. В основе его твердения лежит реакция между оксидом магния и ортофосфорной кислотой, которая протекает интен­сивно с выделением значительного количества теплоты (105 Дж/ моль): MgO + Н3РО4 + 2Н20 -» MgHP04-3H20. Отличительной особенностью этого бетона является очень высокая прочность —

80.. . 120 МПа. Огнеупорность его составляет 1 650°С.

Асфальтовый бетон. Асфальтовый бетон (см. подразд. 13.10) получают в результате отвердевания смеси, состоящей из битума, минерального порошка, песка и щебня или гравия.

Полимербетон. Полимербетон (см. подразд. 14.15) в качестве связующего вещества содержит в основном термореактивные смо­лы.

Бетонополимер. Бетонополимер (см. подразд. 14.15) — это бе­тон, поры которого заполнены полимером.

Легкие бетоны

Легкие бетоны условно подразделяются по назначению на кон­струкционные, имеющие марки по плотности (ее верхний пре­дел, кг/м3) от D1000 до D2000; конструкционно-теплоизоляци­онные (D600; D700; D800; D900); теплоизоляционные (D200; D300; D350; D400; D500); по способу образования пор — на бетоны на пористых заполнителях; беспесчаные; ячеистые (газобетон и пе­нобетон).

Бетоны на пористых заполнителях. Их изготавливают с учетом способности легких заполнителей всплывать на поверхность бе­тонной смеси и поглощать воду. Малая масса заполнителей зат­рудняет использование гравитационных бетоносмесителей, необ­ходимо применение смесителей принудительного действия. В уло­женной бетонной смеси, особенно при ее вибрировании, легкие зерна заполнителей перемещаются вверх, приводя к расслоению смеси, отличному от того, которое наблюдается в тяжелых сме­сях, где заполнители стремятся опуститься вниз. Отсасывание воды пористым заполнителем приводит к равномерному по объему са­моуплотнению бетона. Это позволяет производить распалубку бе­тона в ранние сроки и повышает оборачиваемость формооснаст — ки.

Природные пористые заполнители получают дроблением и сор­тировкой пористых горных пород. К пористым породам вулкани­ческого происхождения относятся: пемза — застывшая вспенен­ная лава; вулканический туф — результат спекания раскаленных пепла и песка; туфовая лава — вспененная лава с вкраплениями частиц вулканического пепла, песка, пемзы и др. Из осадочных пород можно назвать известковый туф и известняк-ракушечник (см. подразд. 4.3).

Искусственные пористые заполнители получают путем вспени­вания расплавов или вспучивания при нагревании до пироплас- тического состояния твердых материалов, обладающих способно­стью образовывать пористые структуры.

Керамзитовый гравий получается обычно во вращающейся печи быстрым нагреванием отформованных или дробленых зерен из легкоплавкой глины, которая размягчается при частичном рас­плавлении и одновременно вспучивается выделяющимися газами. Газы выделяются не из глины, а из других сопутствующих ве­ществ. Газообразование связывают с дегидратацией, декарбониза­цией и восстановительными процессами. Керамзитовый гравий подразделяется на три фракции: 5… 10, 10…20 и 20…40 мм и ха­рактеризуется марками по насыпной плотности от 250 до 800. Ко­эффициент теплопроводности керамзита колеблется в диапазоне 0,035…0,350 Вт/(м • К).

Керамзитовый песок получают отсевом мелких зерен от керам­зитового гравия или его дроблением.

Шунгизитовый гравий — материал, получаемый вспучивани­ем зерен из шунгитосодержащих пород путем их обжига во вра­щающейся печи. Шунгит — минерал (аморфная разновидность графита), образовавшийся в результате природного коксования углей (воздействия на каменные угли высокой температуры от магмы).

Безобжиговый зольный гравий — пористый заполнитель, по­лучаемый на основе золошлаковых отходов (остатков от сжигания твердого топлива на тепловых электростанциях) и портландце­мента или других вяжущих веществ.

Термолит получают обжигом до спекания кремнистых диспер­сных пород (трепела, диатомита и др.). Пористость термолита яв­ляется межзерновой, а не образованной вспучиванием, как в дру­гих пористых заполнителях.

Аглопорит получают термической обработкой смеси глинис­тых пород, золошлаковых отходов и измельченного угля (8… 10 %), выгорание которого обеспечивают два процесса: поробразование и разогрев шихты до температуры спекания.

Шлаковая пемза (термозит) — пористый щебень и песок, по­лучаемый главным образом из доменного шлака (побочного про­дукта при выплавке чугуна). Вспененный шлак образуется при быстром охлаждении шлакового расплава водой, однако не таком быстром, как при производстве гранулированного шлака.

Перлит вспученный — особо легкий материал (у0 = 100… 500 кг/м3) в виде песка или щебня, получаемый быстрым обжи­гом кислых вулканических водосодержащих стекол, таких как пер­лит, обсидиан, витрофир и др. Вспучивание этих пород при нагре­вании до 900… 1 150 °С происходит за счет испарения растворенной в стекле воды и одновременного размягчения породы.

Вермикулит вспученный — особо легкий материал (у0 = 80… 400 кг/м3), получаемый при температуре 600…900°С в виде гра­нул, вспученных поперек пластинок слюды-вермикулита паром выделяющейся гидратной воды.

Подвижность легкобетонной смеси обычно низкая из-за нозд­ревато-пористой поверхности заполнителей, удерживающей зна­чительное количество цементного теста. Часть теста расходуется на заполнение межзерновых пустот и также не выполняет смазоч­ную функцию. Получить подвижную легкобетонную смесь можно лишь при больших расходах вяжущего, когда прослойки теста между зернами заполнителей являются достаточно толстыми. Для экономии вяжущего и снижения плотности легкого бетона реша­ющее значение имеет уменьшение межзерновой пустотности и удельной поверхности заполнителей. Первое достигается подбо­ром оптимального зернового состава, второе — применением за­полнителей окатанной формы с гладкой (оплавленной) поверх­ностью, например керамзитового гравия. Вместе с тем прочность сцепления заполнителя с цементирующим камнем по гладкой поверхности будет ниже, чем по шероховатой.

Главные показатели качества легких бетонов — плотность и прочность. Плотность должна быть как можно меньше, а проч­ность — как можно больше. Оба свойства изменяются с пористо­стью противоположным образом. Прочность легкого бетона, в от­личие от обычного, зависит не только от качества цементирую­щего камня, определяемого значением В/Ц, но и от его количе-

Легкие бетоны

Рис. 9.11. Графики зависимостей прочности и плотности легкого бетона от расхода воды при различной интенсивности уплотнения (мощность уплотнения при способе 2 выше, чем при способе 1)

ства, с увеличением которого прочность возрастает. Одновремен­но растет и плотность, но относительно медленнее, так что удель­ная прочность (отношение прочности к плотности) с увеличени­ем расхода вяжущего вещества возрастает. Зависимости прочности и плотности от расхода воды (В) характеризуются наличием мак­симума при одном и том же значении В,, которое является опти­мальным (рис. 9.11). Увеличение В сверх В, приводит, как и для обычного бетона, к снижению прочности, связанному с разжи­жением цементного теста, и недостаточному самоуплотнению геля. При уменьшении расхода воды ниже оптимального значения сни­жается удобоукладываемость смеси и потеря прочности вызывает­ся механическим недоуплотнением. Если увеличить мощность уп­лотнения, то при том же расходе воды В, прочность возрастает, но теперь значение В, уже не является оптимальным и при В < В) можно получить дальнейшее повышение прочности и достиже­ние нового максимума при В2. Таким образом, оптимальный рас­ход воды не является для данной бетонной смеси постоянной ве­личиной, а зависит от интенсивности ее уплотнения.

Беспесчаный (крупнопористый) бетон. Он состоит из крупных зерен заполнителя, скрепленных в местах контакта цементным камнем. При отсутствии мелких зерен и малом расходе цемента (70… 150 кг/м3) пустоты между зернами остаются незаполненны­ми. Суммарный объем этих пустот будет наибольшим при одина­ковом диаметре зерен заполнителя. Плотность крупнопористого бетона на плотных заполнителях составляет 1 700… 1 900 кг/м3. Это значение можно резко уменьшить, применяя пористые заполни­тели. Беспесчанный бетон продуваем, поэтому стены из него нуж­но оштукатуривать с двух сторон.

Ячеистые бетоны. В зависимости от способа образования пор ячеистые бетоны подразделяются на газобетоны и пенобетоны. При использовании в качестве вяжущего воздушной извести в услови­ях гидросиликатного твердения (автоклавной обработки) ячеис­тый бетон называют газосиликатом или пеносиликатом, так как цементирующий камень в этом случае состоит в основном из гид­росиликатов кальция.

Газобетон приготавливают из смеси портландцемента (час­то с добавлением воздушной извести или едкого натра для уско­рения газообразования), тонкомолотого наполнителя (кварцево­го песка, доменного шлака, золы-унос, нефелинового шлама и др.), воды и газообразователя, в качестве которого чаще всего применяется алюминиевая пудра. При реакции алюминиевой пудры с гидроксидом кальция выделяется водород, который вспенивает массу:

ЗСа(ОН)2 + 2А1 + 6Н20 = ЗН2Т + ЗСаО ■ А1203 — 6Н20

Наполнитель уменьшает расход вяжущего и усадку бетона. Из­мельчение повышает его химическую активность. В газобетоне со­отношение цемента и молотого песка обычно составляет от 1: 2 до 1: 3; расход цемента составляет 180…220 кг/м3. В газосиликате соотношение извести и молотого песка составляет от 1: 3 до 1: 5; расход извести составляет 120… 180 кг/м3.

Кварцевый песок обычно размалывают мокрым способом и применяют в виде шлама. Компоненты дозируют, подают в газо — бетоносмеситель и перемешивают в течение 4…5 мин; затем до­бавляют водную суспензию алюминиевой пудры и после допол­нительного перемешивания смесь заливают в формы, оставляя часть объема на вспучивание массы. Для ускорения процессов га­зообразования, схватывания и твердения смесь затворяют горя­чей водой (температура смеси при заливке в форму — около 40 °С). Через 10…20 мин после заливки в форму газобетонная смесь на­чинает твердеть.

Конец газовыделения должен совпадать с началом схватыва­ния смеси. В противном случае происходит либо оседание смеси, либо растрескивание блока.

Сроки газовыделения регулируют количеством газообразовате­ля, а сроки схватывания — добавками, ускоряющими или замед­ляющими схватывание.

В России разработана технология приготовления смеси вибри­рованием в смесителе и в форме после заливки. Тиксотропное раз­жижение смеси при вибрировании позволяет уменьшить количе­ство воды затворения на 25… 30 %. Вибрирование ускоряет гидра­тацию вяжущего, сокращает сроки газовыделения и вызревания изделий до автоклавной обработки. При резательной технологии отформованные блоки объемом до 10… 12 м3 через 0,5… 1,5 ч ос­вобождают от бортоснастки и разрезают на плиты или стеновые камни стальными струнами. Выпуклую верхушку блока (горбуш­ку) срезают и размалывают в шаровой мельнице вместе с напол­нителем.

Тепловую обработку газобетона чаще всего производят в авто­клавах при температуре 175…200 °С и давлении 0,8… 1,3 МПа. Ав­токлавная обработка обеспечивает протекание реакции между кремнеземом кварцевого песка и гидроксидом кальция, образую­щимся при гидратации портландцемента, поэтому часть портланд­цемента можно заменить молотым кварцевым песком, который становится активным компонентом вяжущего. При этом расход цемента сокращается в 1,5 — 2 раза, а прочность газобетона в воз­расте 2 сут в 3 — 5 раз превышает прочность газобетона, твердев­шего в течение 28 сут в нормальных условиях.

Пенобетон получают добавлением к бетонной смеси отдель­но приготовленной пены, обусловливающей образование ячеек. Пену готовят из воды и пенообразователя (клееканифольного, смолоса­понинового, алюмосульфонафтенового или синтетического) в ло­пастных пеновзбивателях или центробежных насосах. Для того что­бы пена не оседала, в нее вводят стабилизаторы — вещества, по­вышающие вязкость раствора пенообразователя (животный клей, жидкое стекло или сернокислое железо). Пену смешивают с бетон­ной смесью.

После получения однородной массы ее переносят в формы для отвердевания.

Пенобетонная технология по сравнению с газобетонной требу­ет большей выдержки перед тепловой обработкой для набора на­чальной прочности. Для сокращения времени выдержки в смесь добавляют ускорители твердения цемента.

Плотность ячеистых бетонов составляет от 300 до 1 200 кг/м3, а пористость — соответственно от 85 до 60 %. Снижение пористости в этих пределах ведет к увеличению класса по прочности на сжа­тие от ВО,35 до В12,5. От общей пористости и соотношения между объемами замкнутых и открытых пор зависят водопоглощение и морозостойкость, характеризуемая марками: F15, F25, F35, F50, F75, F100.

Чем выше пористость, тем ниже теплопроводность материала X, которая, однако, может возрасти при заполнении пор водой. Например, газобетон плотностью 600 кг/м3 в сухом состоянии имеет X = 0,14, а при влажности %%Х — 0,22 Вт/(м • К). Ячеистые бетоны применяются для легких армированных конструкций, та­ких как стеновые панели, плиты перекрытий, а также для конст­рукций без арматуры в качестве стеновых камней и теплоизоля­ционного материала.

Твердение бетона в зимних условиях

При отрицательной температуре вода в бетоне замерзает и твер­дение его практически прекращается. Кроме того, объем льда по­чти на 9 % больше объема воды. Поэтому замораживание вызыва­ет повреждение структуры бетона и нарушает сцепление заполни­теля с цементным камнем, что особенно опасно в раннем возра­сте, когда прочность бетона еще не достаточно высока. Конечная прочность снижается тем сильнее, чем раньше происходит замо­раживание бетона. Однако бетон, замороженный до начала схва­тывания, после оттаивания нормально твердеет практически без потери прочности, а иногда его прочность в результате заморажи­вания даже повышается, что пока не получило объяснения.

Существует критический возраст, или критическая прочность, бетона, после достижения которых замораживание не снижает прочности. Считается, что бетон должен набрать 50…75 % проект­ной прочности, чтобы замораживание не сопровождалось деструк­тивными процессами. При зимнем бетонировании стремятся от­срочить замерзание бетона до достижения критической прочности.

Известны следующие способы зимнего бетонирования.

Способ термоса основан на снижении теплопотерь путем уст­ройства теплозащиты бетона (утепления опалубки, покрытия теп­лоизоляционными материалами). Начальную температуру бетон­ной смеси доводят до 35…45°С, подогревая воду и заполнители (до 50…90 °С). При этом положительная температура сохраняется в течение 3…5 сут, необходимых для набора бетоном требуемой прочности. Применяют также предварительный электронагрев бе­тонной смеси в бункере.

Этот метод применяют при бетонировании массивных соору­жений с модулем поверхности (отношением площади поверхнос­ти блока бетонирования к его объему) меньше 5.

Искусственный подогрев бетона электрическим током, паром или теплым воздухом используют при бетонировании тонких кон­струкций (балок, колонн, свай и др.). Этот способ дороже спосо­ба термоса, но обеспечивает через сутки 60… 70 % проектной проч­ности бетона.

Способ незамерзающего бетона основан на понижении темпе­ратуры замерзания воды с помощью противоморозных добавок, многие из которых, кроме того, ускоряют твердение бетона. В на­стоящее время в качестве противоморозных добавок широко ис­пользуются соли органических кислот, например формиат натрия. Совместно с электролитами могут использоваться добавки ПАВ. Иногда электролиты усиливают действие ПАВ. С целью ускорения твердения бетона при зимних работах используют быстротверде — ющий портландцемент и глиноземистые цементы. Для повыше­ния тепловыделения часто увеличивают расход цемента в бетоне.

Комбинированные способы представляют собой различные соче­тания указанных выше способов, например сочетание способа термоса с периферийным электропрогревом, способа термоса и способа незамерзающего бетона и др.

Реклама
Сентябрь 2015
Пн Вт Ср Чт Пт Сб Вс
« Ноя   Окт »
 123456
78910111213
14151617181920
21222324252627
282930  
Рубрики