Архивы за 18.09.2015

Полимеры, получаемые ступенчатой полимеризацией

Полиуретаны — это гетероценные полимеры, содержащие в основной цепи повторяющиеся уретановые группы — NH — СО — — О—. Обычно их получают ступенчатой полимеризацией ди — или полиизоцианатов с простыми или сложными полиэфирами.

Для получения лакокрасочных материалов (ЛКМ), клеев и мас­тик используют смесь исходных компонентов. Образование собственно полиуретана происходит лишь в процессе отверждения. Структуру и свойства полиуретанов можно менять в широких пределах путем применения исходных веществ различного химического строения. Они могут быть термопластичными и термореактивными, пластичными и хрупкими, мягкими каучукоподобными и твердыми. Каучукоподобные полиуретаны применяются в мастиках и герметиках. Такие материалы сочетают в себе высокую эластичность (5 = 500… 1000 %) с высокой прочностью (Rp = 20… 50 МПа). Для мастик используются чаще всего компоненты, отверждаемые влагой воздуха.

Линейные полиуретаны хорошо растворяются в органических растворителях. Они малогигроскопичны, стойки к действию аг­рессивных сред, обладают хорошими адгезионными свойствами и высокой износостойкостью. Линейные полиуретаны способны к волокнообразованию и упрочнению волокон при вытяжке за счет ориентации макромолекул и увеличения степени кристалличнос­ти полимера. Полиуретановые клеи отличаются высокой прочно­стью склейки. Ими можно соединять металлы, пластмассы и ке­рамику. В строительстве полиуретановые клеи применяются огра­ничено из-за высокой токсичности полиизоционатов. Основное применение полиуретаны находят в производстве пенопластов.

Эпоксидные смолы содержат в молекуле не менее двух концевых

I I

эпоксидных групп —С—С— , благодаря наличию которых эпоксид­ные смолы способны отверждаться под действием различных ами­нов, ангидридов двухосновных кислот и др. Этот процесс, заключа­ющийся в образовании сшитой структуры полимера, не сопровож­дается выделением каких-либо побочных продуктов и может проис­ходить без повышения давления при комнатной температуре.

Эпоксидные смолы обладают высокой адгезией к металлам, стеклу, пластмассам и другим материалам. Благодаря этому, а также высокой прочности они широко применяются в качестве клеев, защитных покрытий и связующего для стеклопластиков.

Отвердители эпоксидной смолы, а часто и сама смола — ток­сичны. Отвержденная смола токсичностью не обладает.

Поликонденсационные полимеры

Фенолоформальдегидная смола. Фенолоформальдегидная смо­ла (ФФС) является важнейшим представителем из группы фено­лоальдегидных полимеров, получаемых при поликонденсации фенола или его гомологов (крезола, ксиленола) с формальдеги­дом или другими альдегидами, например уксусным или масля­ным. Аналогичные смолы получают также путем поликонденса­ции фенола с фурфуролом.

Формальдегид (НСОН) — газ, образующийся в результате пе­реработки метилового спирта или метана. Раствор формальдегида в воде известен под названием «формалин». Фенол (С6Н5ОН) — бе­лое кристаллическое вещество с характерным запахом. Фенол выделяют из каменноугольной или сланцевой смолы, а также син­тезируют из пропилена и бензола.

При поликонденсации фенола с альдегидами могут быть полу­чены смолы двух типов: термопластичные, называемые новолач — ными, и термореактивные, называемые резольными[9].

Резольные (бакелитовые) смолы образуются в щелочной среде при избытке формальдегида и только в случае трифункциональ — ных фенолов. Новолачные смолы образуются на основе как три- функциональных, так и бифункциональных фенолов. Смола по­лучается поликонденсацией при избытке фенола и в кислой среде. Макромолекулы новолачной смолы имеют линейную структуру. Новолачная смола, плавкая и растворимая, может быть переве­дена в нерастворимую и неплавкую форму путем добавления гек­саметилентетрамина (CH2)6N4 (уротропина) и последующего на­гревания. При повышенной температуре в присутствии воды урот­ропин разлагается на аммиак и формальдегид. Последний реаги­рует с новолачным олигомером с образованием трехмерной струк­туры.

Этим свойством пользуются на практике для отверждения но­волачной смолы при получении пластмасс.

На основе фенолоформальдегидных синтетических смол с на­полнителями, красителями, отвердителями получают конструк­ционные материалы — фенопласты (см. подразд. 14.10). Изготавли­вают также литые изделия без наполнителей (неолейкорит, литой карболит, литой резит и др.), применяемые главным образом в галантерее. Спиртовые растворы резольной смолы, называемые бакелитовым лаком, применяют в качестве клея и для антикорро­зионной защиты металлов.

Карбамидная смола. Мочевиноформальдегидная смола (МФС) входит в группу аминоальдегидных полимеров, другим распрост­раненным представителем которой является меламиноформаль — дегидный полимер — продукт поликонденсации формальдегида с меламином.

Карбамидная смола получается поликонденсацией мочевины и формальдегида в водном растворе. По физико-химическим свой­ствам она имеет много общего с ФФС, однако отличается от пос­ледней отсутствием цвета и запаха, светостойкостью и нетоксич — ностью.

Карбамидная смола применяется так же, как и ФФС, для из­готовления прессовочных масс с различными наполнителями. Ком­позиции на ее основе можно окрашивать в любые цвета. Отверж­денная карбамидная смола безвредна для человека, поэтому ами­нопласты часто используют для изготовления пищевой тары.

Полиэфирные смолы. Это название объединяет четыре различ­ные группы сложных[10] полиэфиров: 1) алкидные смолы; 2) во­локнообразующие полиэфирные смолы; 3) ненасыщенные поли­эфирные смолы; 4) поликарбонаты. В основной цепи всех пере­численных полимеров регулярно повторяются сложноэфирные группы —СО —О — .

Алкидные смолы являются наиболее распространенной группой пленкообразующих веществ, составляющей до 70 % объема всей синтетической лакокрасочной продукции. Они применяются так­же в качестве клеев, заливочных масс, пластификаторов поливи­нилхлорида, а также для изготовления композиций с каучуком. Из алкидных полиэфиров наиболее известны глифталевые и пен — тафталевые смолы. Они относятся к сложным полиэфирам, моди­фицированным растительными маслами (тунговым, льняным, подсолнечным, хлопковым и др.) или жирными кислотами. От­верждение алкидов в покрытиях может происходить как за счет дальнейшей поликонденсации разветвленных полиэфиров (при температуре выше 150 °С), так и вследствие окислительной поли­меризации радикалов ненасыщенных жирных кислот-модифика­торов (при комнатной температуре).

К волокнообразующим полиэфирным смолам относится полиэти — лентерефталат (лавсан, терилен, дакрон), представляющий со­бой полиэфир этиленгликоля и терефталовой кислоты. Это — ли­нейный кристаллический полимер с температурой плавления около 265 °С. Кроме волокон и тканых материалов из него изготавливают пленки и некоторые изделия (трубки, прокладки, ремни, транс­портерные ленты И Т. Д.).

Ненасыщенные[11] полиэфирные смолы получают поликонденса­цией ненасыщенных дикарбоновых кислот, чаще всего малеино­вой или фумаровой с многоатомными спиртами. Благодаря нали­чию в таких полиэфирах двойных связей между атомами углерода они способны к дальнейшей полимеризации и сополимеризации с различными мономерами. Молекулярная масса их не превышает 1 500… 2 500.

Ненасыщенная полиэфирная смола часто представляет собой 60 —75%-й раствор непредельного полиэфира в стироле, играю­щем двоякую роль: растворителя и сшивающего агента. Переход вязкожидкого раствора в твердое неплавкое и нерастворимое со­стояние происходит вследствие сополимеризации полиэфира и стирола. Процесс отверждения не сопровождается выделением ка­ких-либо летучих побочных продуктов и может происходить в обыч­ных условиях.

Присущее армированным ненасыщенным полиэфирам (стек­лопластикам) сочетание высокой механической прочности, хи­мической стойкости и малой плотности поставило их в один ряд с конструкционными материалами, такими как сталь, древеси­на, бетон (см. подразд. 14.10).

Поликарбонаты — это сложные полиэфиры угольной кислоты с общей формулой [—О — R—О — СО — Наибольшее практическое значение получил поликарбонат на основе дифенилпропана, вы­пускаемый под названиями: «Дифлон» (Россия), «Лексан» и «Мер — лон» (США), «Макролон» и «Макрофол» (ФРГ). Свойства поли­карбонатов зависят от строения и соотношения исходных компо­нентов. Молекулярная масса полимеров составляет 25000…70000, но может доходить до 200 000. Температура плавления дифенилолп­ропана составляет 220…230°С. Поликарбонаты хорошо раствори­мы в хлорированных углеводородах, фенолах и др. Их отличает вы­сокая атмосферо — и водостойкость, а также устойчивость к воздей­ствию кислот и щелочей. Важными свойствами дифлона являются высокая ударная прочность и высокая прозрачность.

Изделия из поликарбонатов получают литьем под давлением, экструзией, вакуумным прессованием. Соединение частей можно осуществлять сваркой, склеиванием, горячей штамповкой.

В строительстве цельные и сотовые листы поликарбоната ис­пользуются для остекления зданий, выполнения прозрачных кро­вель и декоративных перегородок, используются в создании ма­лых архитектурных форм различных павильонов и укрытий. Цель­ный листовой поликарбонат легко может быть изогнут без нагре­ва, что используется при создании выпуклых форм световых фо­нарей, кровель, навесов. Сотовый (пустотный) поликарбонат в отличие от цельного обладает хорошими тепло — и звукоизоляци­онными свойствами.

Полисульфидные (тиоколовые) каучуки. Полисульфидные кау­чуки являются продуктом поликонденсации алифатических дига- логенпроизводных с ди — или полисульфидом натрия:

/i(Cl-R-Cl) + (я + l)Na2S4 — э
-»Na S4—[R—S —S-S —S —]„-Na + 2«NaCl

Получаются линейные насыщенные полимеры. Поликонденсация осуществляется при температуре 80… 100 °С в водной дисперсии.

Различают тетра — и дисульфидные полимеры. Все тетрасуль — фидные полимеры каучукоподобны независимо от R. Дисульфид­ные полимеры обладают свойствами эластомеров, если углеводо­родный радикал содержит более четырех атомов углерода.

Тиоколы вулканизуются оксидами или перекисями металлов. При вулканизации происходит увеличение молекулярной массы, так как сшиваются концы линейных цепей, а поперечные связи отсутствуют.

Тиоколы выпускаются в виде твердых эластичных или жидких продуктов. Это зависит от молекулярной массы. Жидкие тиоколы используются для получения мастик и герметиков.

Полимеризационные полимеры

Формулы полимеризационных полимеров приведены на рис.

14.6.

Полиэтилен. Полиэтилен [ — СН2—СН2—]„ получают полиме­ризацией газа этилена (продукта пиролиза нефтяных фракций) тремя способами: при высоком (ВД), низком (НД) и среднем (СД) давлении. Свойства полиэтилена зависят от метода получе­ния (табл. 14.2).

Полиэтилены НД и СД близки по своим свойствам. Их более высокая кристалличность, а также плотность, прочность и темпе­ратура размягчения по сравнению с полиэтиленом ВД обусловле­ны меньшей разветвленностью полимерной цепи. Однако поли­этилены НД и СД более склонны к старению, в то время как полиэтилен ВД устойчив к растворам кислот, щелочей, солей, органическим растворителям и разрушается только под действи­ем концентрированной азотной кислоты.

В строительстве применяются полиэтиленовые трубы различ­ного назначения, гидро — и пароизоляционные пленки, листы тол­щиной до 5 мм и теплоизоляционный материал — пенополиэти­лен.

Полипропилен. Полипропилен [ —СН2—СН(СН3) —]„ представ­ляет собой продукт полимеризации газа пропилена при темпера­туре 65… 70 °С и давлении 1,0… 1,2 МПа в растворителе (уайт-спи­рите, бензине) в присутствии катализатора. Поскольку звенья мак­ромолекулы полипропилена асимметричны, он может быть изо — тактйческим и атактическим.

Полипропилен отличается значительной прочностью при рас­тяжении, твердостью и ударной вязкостью. Он является более жестким и более теплостойким материалом, чем полиэтилен, но плотность его ниже (900 кг/м3).

u>

о

ос

 

Н Н

I I

-с-с-

I I

н с

HCf^CH

 

Полимеризационные полимеры

 

нсЧ^сн сн

Подпись: Г н н 1 1 Г н I СНз 1 1 J 1 1 -с-с- 1 1 1 -с 1 1 -с- 1 1 1 н с 1 н с=о 1 1 0=C-CH3J п 1 го ж 0 1 -о Подпись: ПоливинилацетатПодпись: Полиметилметакрилат

Полимеризационные полимеры

Полистирол

Рис. 14.6. Полимеризационные полимеры:

а — пластомеры; б — эластомеры

Вид

поли­

этиле­

на

Молекуляр­ная масса М

Степень крис­таллич­ности, %

Плотность То. г/см3

Темпера­тура раз­мягчения гр, °С

Предел проч­ности при рас­тяжении Др, МПа

Относи­тельное удлине­ние при разрыве 5, %

вд

(1,9. ..5,0)- 104

Менее

65

0,91.

.0,93

108.

..120

12.

.16

150.

.600

нд

{1… 300)- 104

75…85

0,95.

.0,96

125

.. 134

22.

.45

250.

.900

сд

(7. ..40)- 104

До 93

0,96.

.0,97

127.

..130

27.

.33

200.

.800

Полипропилен, подобно полиэтилену, быстро стареет под дей­ствием солнечного света. Старение замедляют дифениламином или сажей.

Применяют полипропилен для изготовления водопроводных труб, прозрачной паронепроницаемой пленки, чрезвычайно проч­ного синтетического волокна, которое используют при производ­стве технических тканей и геосинтетических материалов. Исполь­зуют его и как модифицирующую добавку к битуму.

Полиизобутилен. Он представляет собой высокоэластичный ка­учук, получаемый полимеризацией газа изобутилена. Высокомо­лекулярный полиизобутилен водостоек и устойчив к действию кислот и щелочей, однако под воздействием солнечных лучей и кислорода воздуха быстро стареет. Введение сажи или графита значительно замедляет старение полиизобутилена.

Полиизобутилен применяется как связующее вещество в кле­ях, мастиках и герметиках.

Полистирол. Полистирол получают полимеризацией стирола — бесцветной жидкости с характерным запахом.

Полимер, получаемый полимеризацией по свободнорадикаль­ному механизму, имеет атактическое строение и является аморф­ным; полимер, получаемый ионной полимеризацией, в зависи­мости от типа катализатора может быть аморфным или кристал­лическим.

Полимеризацию проводят в блоке, эмульсии или суспензии.

Блочный полистирол имеет высокую степень чистоты, так как полимеризацию осуществляют без инициатора, что возможно бла­годаря способности стирола полимеризоваться при нагревании.

Эмульсионный полистирол получают в виде порошка. Исходные компоненты, воду и стирол, перемешивают в присутствии эмуль­гатора, предотвращающего слияние капелек стирола. Затем в ре­актор загружают инициатор (перекись водорода, персульфат ам­мония или калия) и повышают температуру до 96…98°С. В ре­зультате полимеризации микрокапли стирола превращаются в твер­дые частицы полимера, которые осаждают с помощью коагулято­ров (сернокислого алюминия и др.), промывают и отделяют от воды центрифугированием. Полученный порошок сушат в ваку­умных сушилках или в «кипящем слое».

Суспензионный полистирол получают полимеризацией стирола в суспензии, которая отличается от эмульсиии более крупными каплями стирола (0,5… 5,0 мм). Благодаря значительным размерам частицы полимера отделяются от воды без применения осадите — лей, что обусловливает более высокую чистоту продукта по срав­нению с эмульсионным.

Полистирол имеет плотность около 1 070 кг/м3. Блочный поли­стирол прозрачен и бесцветен, пропускает до 90 % видимого све­та. Полистирол нерастворим в спиртах и бензине, стоек к воздей­ствию кислот и щелочей, водостоек. В ароматических и хлориро­ванных углеводородах он растворяется, образуя вязкую массу, которую используют для склеивания полистирола. Полистирол хрупок. В результате старения его хрупкость возрастает. Получение ударопрочного полистирола достигается сополимеризацией его с другими мономерами, сплавлением с синтетическими каучуками и другими способами.

Полистирол применяют для изготовления декоративных сте­кол, цветных облицовочных плиток. Вспененный полистирол яв­ляется звуко — и теплоизоляционным материалом. Из ударопроч­ного полистирола изготавливают сантехническое оборудование, трубы, арматуру, мебельную и оконную фурнитуру, гидроизоля­ционные пленки. Полистирол применяется в лакокрасочной про­мышленности, а также при изготовлении изделий широкого по­требления (посуды, авторучек, футляров, коробок и т. д.).

Поливинилхлорид. Поливинилхлорид (ПВХ) [ — СН2^*СНС1 — ]„ получают радикальной полимеризацией газа хлористого винила. Полимеризацию проводят главным образом в суспензии или эмуль­сии с перекисными инициаторами или азосоединениями. Степень кристалличности ПВХ может достигать 10 %. Благодаря высокому содержанию хлора ПВХ не горит. При 130… 150 °С начинается его разложение с выделением хлористого водорода. ПВХ нерастворим во многих растворителях, но при нагревании растворяется в хло­рированных углеводородах, ацетоне, циклогексаноне и др. ПВХ устойчив к воздействию смазочных масел, кислот и щелочей. Под воздействием механических напряжений, света и теплоты проте­кает процесс разложения полимера, сопровождающийся отщеп­лением НС1, образованием двойных связей и присоединением кислорода по месту их разрыва. Для предотвращения разложения к ПВХ добавляют стабилизаторы (фосфид свинца, карбонаты свин­ца, свинцовый глет и др.). Винилхлорид легко сополимеризуется со многими непредельными соединениями. Это позволяет моди­фицировать свойства поливинилхлорида.

ПВХ легко пластифицируется дибутилфталатом и диоктилфта — латом, что позволяет наряду с жесткими материалами (винипла­стом) получать мягкие пластмассы (пластикат и пластизоль).

На основе ПВХ получают линолеумы (от лат. linium — полотно и oleum — масло), гидро — и газоизоляционные пленки, листовой винипласт, водопроводные и канализационные трубы, водосточ­ные желоба, пенопласты. Методом экструзии получают погонаж­ные изделия: плинтуса, карнизы, раскладки, поручни, прутки для сварки винипласта и т. д. На бумажной основе выпускаются обои, пеноплен, линкруст.

Перхлорвинил (хлорированный поливинилхлорид). Хлорирование осуществляется путем пропускания газообразного хлора через ра­створ поливинилхлорида, чаще всего в хлорбензоле и тетрахлор — этане. При этом в среднем каждая третья группа СН2 в цепи по­лимера превращается в СНС1. Хлорированный поливинилхлорид (Х-ПВХ) выпускается в виде порошка или гранул от белого до кремового цвета плотностью 1 470… 1 500 кг/м3. Х-ПВХ растворим во многих органических растворителях. Он обладает высокими ме­ханической прочностью, влагостойкостью, стойкостью по отно­шению к кислотам, щелочам, маслам, высокими адгезионными свойствами. Его температура размягчения составляет 85… 100°С. Перхлорвинил широко применяется для производства лаков, эма­лей и клеев. Из Х-ПВХ выпускаются водопроводные трубы, со­единяемые с помощью клея. Трубы из Х-ПВХ допускается приме­нять при температуре воды до 80 °С, а трубы из ПВХ — только до 60 °С.

Фторопласты. Фторсодержащие полимеры по химической стой­кости превосходят все природные и синтетические полимеры. Изделия из них можно эксплуатировать при температуре до 260 °С. Эти полимеры обладают антифрикционными и гидрофобными свойствами.

Политетрафторэтилен (фторопласт-4) [ —CF2—CF2—]„ по­лучают полимеризацией газа тетрафторэтилена в присутствии пе — рекисных катализаторов. Политетрафторэтилен совершенно не­растворим. Он имеет белый цвет. Его плотность составляет 2 250… 2 270 кг/м3, кристалличность — 80… 85 %, температура плав­ления — 327 °С.

Политетрафторэтилен применяют для изготовления пленок, труб, профильных изделий, подшипников скольжения, оболочек кабелей, синтетического волокна, деталей машин и приборов. Суспензии политетрафторэтилена применяют для гидрофобных антикоррозионных покрытий и пропитки материалов.

Политрифторхлорэтилен (фторопласт-3) [ —CF2—CFC1—]„ по­лучают радикальной полимеризацией газа трифторхлорэтилена, чаще всего эмульсионным и суспензионным способами в водной среде. Политрифторхлорэтилен представляет собой кристалличе­ский полимер белого цвета плотностью 2 090… 2 160 кг/м3. По срав­нению с фторопластом-4 он более пластичен, но термическая стой­кость его на 80… 100 °С ниже. По химической стойкости он также уступает политетрафторэтилену, однако превосходит многие дру­гие полимеры.

Политрифторхлорэтилен применяют в машино — и приборост­роении, электро — и радиоэлектронике в виде различных изделий, листовых материалов, пленки, защитных покрытий и смазки.

Полиметилметакрилат. Полиметилметакрилат (оргстекло, или плексиглас) получают радикальной полимеризацией метилового эфира метакриловой кислоты в присутствии инициаторов. Поли­меризация проводится в блоке, в водной суспензии или эмульсии и органических растворителях. Полимер совершенно не кристал­лизуется, поскольку является атактическим.

Органическое стекло получают в формах из листового сили­катного стекла. В формы заливают 10 —30%-й раствор полиметил­метакрилата в мономере или жидкий мономер, смешанный с инициатором. Заполненные формы нагревают, повышая темпера­туру постепенно по определенному режиму от 45 до 120 °С в тече­ние 24…48 ч. По окончании полимеризации формы охлаждают, разнимают и извлекают полученные листы. При непрерывном спо­собе производства олигомер подается в пространство между дву­мя параллельно натянутыми транспортерными лентами из нержа­веющей стали. Боковые зазоры между лентами закрыты специаль­ными прокладками. В зоне полимеризации производится тепловая обработка изделия.

Оргстекло — материал, бесцветный и прозрачный. Он легко окрашивается в массе, сохраняя прозрачность. Оргстекло пропус­кает до 91 …92 % лучей видимой области спектра, 75 % ультрафи­олетовых лучей и значительную часть инфракрасных лучей; обла­дает достаточной стойкостью к старению в естественных услови­ях; легко сваривается и склеивается, поддается механической об­работке и полировке.

Оргстекло применяется для светопрозрачных конструкций, светотехнических устройств, остекления самолетов, теплиц, оран­жерей, зимних садов, павильонов, изготовления оптических сте­кол и других целей. Окрашенное и матовое стекло применяется для декоративных целей.

Общие свойства полимеров

Полимеры обладают рядом положительных свойств: малой плот­ностью, высокой прочностью и эластичностью, газо — и водоне­проницаемостью, низкой теплопроводностью, высокой химиче­ской стойкостью, легкостью механической обработки, способно­стью склеиваться и свариваться. Вместе с тем им присущи и недо­статки: низкая теплостойкость, низкая твердость, высокое тепло­вое расширение, повышенная ползучесть, относительно быстрое старение, горючесть.

Старение полимеров. В процессе эксплуатации изделий из поли­мерных материалов происходит их постепенное старение под дей­ствием теплоты, света, ионизирующего излучения, механических напряжений, воды, кислорода и других химических веществ. Ста­рение заключается в разрыве связей основной цепи макромолеку­лы и понижении молекулярной массы, что может сопровождать­ся изменением химического состава. Разрыв макромолекул в при­сутствии кислорода воздуха способствует возникновению свобод­ных радикалов, которые инициируют цепной процесс окисли­тельной деструкции. Полимеры, содержащие в цепи двойные свя­зи, быстрее подвергаются деструкции, чем предельные.

Стабилизация полимеров. С целью замедления старения поли­меров к ним добавляют стабилизаторы: антиоксиданты (ингиби­торы термоокислительной деструкции), фотостабилизаторы (по­вышают устойчивость полимеров к фотохимической деструкции), антирады (тормозят старение полимеров под влиянием радиоак­тивных излучений), пассиваторы (снижают химическую активность полимеров) и др.

С помощью антипиренов (см. подразд. 3.8) пластмассы делают трудногорючими. При удалении источника пламени их горение прекращается. Такие материалы называются самозатухающими.

Высокоэластичность. Жидкое состояние полимеров называется вязкотекучим, так как вязкость полимерных расплавов велика из — за взаимного зацепления молекул. Вязкотекучее состояние возни­кает при нагревании линейных полимеров выше их температуры размягчения /р. В этом состоянии полимеры имеют аморфное стро­ение (рис. 14.3, структура а), деформации их необратимы. При приложении постоянной силы они текут, но довольно медленно.

Общие свойства полимеров

Рис. 14.3. Физические состояния полимеров в зависимости от темпера­туры

Рис. 14.4. Две возможные
конфигурации мономерного
звена полипропилена

Общие свойства полимеровЕсли соединить цепи полимерного расплава сшивками (рис. 14.3, структура Ь), то они не смогут перемещаться относительно друг друга и течение станет невозможным. С другой стороны, подвиж­ность цепей между сшивками не ограничена и свернутые участки цепи могут распрямляться при растяжении, обеспечивая исклю­чительно большие обратимые деформации, называемые высоко­эластическими. Сцепление полимерных цепей в высокоэластиче­ском состоянии вещества, исключающее его течение, не обяза­тельно должно быть связано с химическими связями между мак­ромолекулами. Роль сшивок могут играть зародыши кристалличе­ской фазы (рис. 14.3, структура с), механические зацепления мо­лекул или небольшие застеклованные области.

При понижении температуры ниже температуры стеклования t„ или температуры кристаллизации tKp полимеры переходят из высокоэластического в твердое состояние, в котором они могут иметь стеклообразную (рис. 14.3, структура е) или частично-кри­сталлическую (рис. 14.3, структура с) структуру. В стеклообразной структуре с кристаллические области (кристаллиты) разделены аморфными прослойками. Чисто кристаллическое состояние (рис.

14.3, структура d) для полимеров не характерно.

Не кристаллизуются (даже частично) статистические сополи­меры, а также атактические полимеры, у которых в цепи случай­ным образом чередуются звенья разных пространственных кон­фигураций (рис. 14.4). Изотактические гомополимеры, содержа­щие звенья только одной конфигурации, легко кристаллизуются.

Общие свойства полимеров

Таким образом, деформация полимеров состоит из трех час­тей:

где £упр — упругая (обратимая) деформация, заключающаяся в изменении валентных углов и межатомных расстояний; евэ — вы­сокоэластическая деформация (тоже обратимая), связанная с из­менением конформации (формы) макромолекул, обладающих па­мятью формы; епл — пластическая (необратимая) деформация,

Общие свойства полимеров

Рис. 14.5. Упругая, высокоэластическая и пластическая деформации полимеров в зависимости от температуры

обусловленная беспрепятственным скольжением молекул отно­сительно друг друга.

Соотношение между этими видами деформаций зависит от тем­пературы (рис. 14.5). Температурный интервал по оси абсцисс ог­раничен температурой хрупкости txp, ниже которой гибкость мак­ромолекул не проявляется, и температурой перехода в состояние ньютоновской жидкости tH. Высокоэластическая деформация име­ет место в интервале температур стеклования /ст и размягчения /р. В этом интервале полимеры характеризуются очень высокими об­ратимыми деформациями. Их относительное удлинение достигает

Таблица 14.1

Пластомеры

Температура стеклования, °С

Эластомеры

Температура стеклования, °С

Поликарбонат

145

Силиконовый

каучук

-123

Политетрафтор­

этилен

120

Полиизобутилен

-74

Полиметилмет­

акрилат

105

Бутилкаучук

-68

Полистирол

100

Бутадиенстироль — ный каучук

-65

Поливинилхлорид

81

Этиленпропилен — диеновый каучук

-55

1 000 %, а модуль упругости низкий — 0,1 …0,3 МПа. Для низко­молекулярных веществ евэ = 0 и tCT = гр. Для сравнения: модуль упругости стали составляет 105…106 МПа; оконного стекла —

104.. . 105 МПа; полимерных стекол — 103… Ю4 МПа; частично-кри­сталлических полимеров — 102… 103 МПа.

Различие между эластомерами (искусственными каучуками) и пластомерами (полимерами, не проявляющими высокоэластич — ности) заключается в уровне их температуры стеклования (табл. 14.1).

Из табл. 14.1 видно, что температурный интервал высокоэлас­тического состояния искусственных каучуков приходится на обыч­ные температурные условия, а у пластомеров он находится выше

80.. . 140 °С.

Строение полимеров

Полимеры, макромолекулы которых построены из разных эле­ментарных звеньев, называются сополимерами (в отличие от гамо — полимеров, содержащих в цепи одинаковые элементарные звенья). Сополимеры бывают статистическими: —А — В— В—А— С— В— —А—А—В—А— С— В—; регулярными: —А— Б— С—А — В— С— —А—В— С—; блочными: —А—А—А—А — В— В— В— С— С— С— — С-.

Макромолекулы по форме бывают линейными, разветвленны­ми и сшитыми (сетчатыми). В последнем случае линейные цепи со­единены поперечными связями, через атомные группы (см. рис. 14.2). В каучуках сшивание линейных молекул называется вулканизацией.

Линейное строение (см. рис. 14.1) имеют все полимеризацион — ные полимеры. Поликонденсационные полимеры могут быть как линейными, так и сетчатыми. При поликонденсации бифункцио­нальных соединений (дающих радикалы с двумя свободными свя­зями) образуются линейные полимеры. Если одно или оба моно­мера являются трехфункциональными (или более), то образуются сетчатые полимеры.

По отношению к нагреванию полимеры подразделяются на термопластичные и термореактивные.

Термопластичными являются линейные полимеры. При нагре­вании они размягчаются и плавятся, а при охлаждении восста­навливают свои свойства. Это свойство используется при формо­вании и сварке изделий.

Термореактивные полимеры, имеющие сшитые макромолеку­лы, не плавятся без разложения, что обусловлено наличием свя­зей между линейными цепочками.

Реклама
Сентябрь 2015
Пн Вт Ср Чт Пт Сб Вс
« Ноя   Окт »
 123456
78910111213
14151617181920
21222324252627
282930  
Рубрики