Архивы за Октябрь 2015

МЕТОДЫ ФОРМОВАНИЯ СБОРНЫХ | ЖЕЛЕЗОБЕТОННЫХ ИЗДЕЛИЙ

Бетонную смесь, доставленную с центрального бетонного за-, вода или приготовленную на местной установке, необходимо по­дать к месту формования, а затем уплотнить с помощью вибрато­ров или специальных установок. Поэтому в данной главе наряду с различными способами формования изделий рассматриваются также и вопросы подачи бетонной смеси. :

Гидроизоляционные работы

Строительные конструкции, подверженные воздействию воды и других жид­костей, во избежание потерь их эксплуатационных качеств или разрушения за­щищают покрытиями из гидрофобных материалов. Такие покрытия называют гидроизоляцией, а работы по их устройству — гидроизоляционными. Материалов для

гидроизоляции множество. Это и быстро твердеющие составы для ремонта ава­рийных протечек, и специальные штукатурки, и составы для придания бетону и кирпичу водоотталкивающих свойств, и антисолевые или антигрибковые пропит­ки и т. д.

По назначению гидроизоляция может быть антифильтрационной, гермети­зирующей или антикоррозионной. Антифильтрационная гидроизоляция служит для защиты от Проникновения воды в подземные и подводные строения; герметизи­рующая — для обеспечения непроницаемости для жидкостей и газов стыков и со­единений конструктивных элементов зданий и сооружений с помощью герме­тиков — эластичных или пластоэластичных материалов; антикоррозионная — для защиты материала строения от агрессивного воздействия атмосферы и воды, от электрокоррозии блуждающими токами (опоры линий электропередачи, под­земные трубопроводы и иные металлоконструкции).

По конструктивным особенностям гидроизоляция классифицируется как по­верхностная (окрасочная, оклеенная, штукатурная, монтируемая, засыпная), шпоночная (гидроизоляционный материал в швах и стыках), проникающая (для уменьшения капиллярной проводимости бетона) и инъекционная.

Вид гидроизоляции предусматривается проектом и назначается в зависимос­ти от интенсивности воздействия влаги на конструкцию. Гидроизоляция в по­мещениях с мокрыми процессами в местах примыкания пола к вертикальным поверхностям должна устраиваться на высоту, указанную в проектной докумен­тации, но не менее чем на 30 см. Вертикальную гидроизоляцию стен подвала выполняют на высоту 0,5 м выше уровня грунтовых вод.

Гидроизоляционные покрытия можно классифицировать по способу нане­сения и принципу действия на окрасочные, оклеечные, литые, проникающие и монтируемые. К пластичным относят окрасочные, оклеечные и литые, к жест­ким — цементно-песчаные, асфальтовые и другие штукатурки и листовые по­крытия.

Требования к изолируемым поверхностям. Поверхности до начала изоляционных работ подготавливают, очищают от мусора и пыли. Вертикальные поверхности каменных конструкций должны быть оштукатурены на высоту примыкания ру­лонного ковра оклеечной гидроизоляции или нанесения окрасочной гидроизо­ляции. Все изолируемые поверхности (за исключением поверхностей, изоли­руемых цементным раствором) должны быть высушены; все выступающие час­ти и наплывы срублены, срезаны концы арматуры и проволоки. Если проектом предусмотрено прохождение через конструкции трубопроводов и кабелей, то до начала гидроизоляционных работ должны быть установлены соответствующие проемы и гильзы.

Г идроизоляция должна выполняться по огрунтованному основанию. Огрун — товка поверхностей перед нанесением изоляционных составов выполняется без пропусков и разрывов. Грунтовка должна иметь прочное сцепление с основани­ем, на приложенном к ней тампоне не должно оставаться следов вяжущего.

По влажным основаниям допускается наносить только грунтовки или изоля­ционные составы на водной основе, если влага, выступающая на поверхности основания, не нарушает целостности пленки покрытия.

Окрасочная гидроизоляция — сплошное многослойное водонепроницаемое по­крытие, выполненное окрасочным способом. Такая гидроизоляция применяет­ся только со стороны подпора воды, в основном для защиты от капиллярной влаж­ности, а иногда от просачивающейся воды. Если есть доступ к периодическому осмотру и ремонту гидроизоляционного слоя, то окрасочную гидроизоляцию можно применять и при напоре до 2 м. Толщина наносимых слоев и отвердев­шей изоляции зависит от изолирующего материала. Например, слой красящего состава из этинолевого лака, смешанного с распушенным асбестом, составляет 0,2—0,8 мм. Общая толщина слоя изоляции из остывшей битумной мастики имеет 2—4 мм и часто такая гидроизоляция называется обмазочной.

Окрабочную гидроизоляцию из битумных мастик, как правило, предусмат­ривают для защиты конструкций от грунтовой сырости. Окрасочный материал наносят равномерно без пропусков по всей изолируемой поверхности не менее чем в два слоя толщиной 0,5—2 мм каждый. Последующий слой наносят лишь после отвердения и просушки ранее нанесенного. Каждый слой окрасочной гид­роизоляции должен быть сплошным, без разрывов-, равномерной толщины. Все обнаруженные дефектные места расчищают и покрывают заново. Кроме распы­лителей и кистей для нанесения грунтовочных составов и битумных мастик при­меняют волосяные щетки с удлиненной ручкой, гребки с резиновой вставкой для разравнивания нанесенного слоя мастики на горизонтальной поверхности.

К окрасочной (обмазочной) гидроизоляции относится и цементно-полимер­ная мастика — смесь цемента и минерального наполнителя. Применять ее мож­но не только на жестких поверхностях, но и в местах, подвергающихся деформа­ции и вибрации. Цена мастики несколько выше, чем битума, но работать с ней удобнее и проще, ведь наносить битум нужно разогретым до 120 °С.

Оклеечная гидроизоляция — сплошной наклеенный водонепроницаемый ковер из рулонных или гибких листовых материалов (гидроизола, изола, бризола, стек — лорубероида, фольгоизола и др.), наклеенных в 1 —4 слоя на изолируемую повер­хность с помощью специальных водостойких мастик или клеев. Такую изоляцию применяют при больших гидростатических напорах воды.

Перед наклейкой рулонных материалов на битумных мастиках на защищае­мую поверхность должны быть нанесены грунтовки на основе битума, на синте­тических клеях — грунтовки этих же клеев. Сушку грунтовок на основе битума, из синтетического клея, полимерных и битумно-полимерных грунтовок произ­водят до отлипа, как правило, от 40 минут до 2 часов.

Рулонные материалы наклеивают на горячие или холодные мастики равно­мерным сплошным слоем без пропусков, при этом толщина приклеиваемого слоя мастики должна составлять 2 мм для горячих и до 1 мм для холодных мастик. Горячие мастики должны наноситься на огрунтованное основание непосред­ственно перед наклейкой полотнищ. Холодные мастики наносятся заблаговре­менно, каждый последующий слой ковра разрешается наклеивать не ранее чем через 12 часов.

Перед наклейкой рулоны раскатывают, проверяют соответствие их проект­ному положению с соблюдением величины их нахлестки (каждое последующее полотнище должно перекрывать предыдущее) при наклейке и, если необходи­мо, отрезают куски материала нужной длины. При наклейке рулонных материа­лов из гидроизола, рубероида и стеклорубероида величина нахлестки полотнищ должна быть не менее 100 мм. Сопряжение полотнищ рулонных материалов по их длине выполняют вразбежку на расстоянии не менее 30 см один от другого с нахлесткой полотнищ не менее, чем на 15 см.

Затем рулон скатывается до середины с обоих концов, подогревается горел­кой с внутренней стороны (либо промазывается мастиками горячего или холод­ного приготовления) и раскатывается вновь с приклейкой (приваркой). Мастич­ный слой должен быть равномерны^, сплошным, без пропусков. Полотнища ру­лонных материалов должны укладываться во всех слоях в одном направлении, перекрестное расположение полотнищ в смежных слоях не допускается.

На вертикальные и наклонные (более 25°) поверхности рулонные материалы наклеивают заранее нарезанными кусками длиной 1,5—2 м снизу вверх. Причем наносить мастику следует сначала на изолируемую поверхность, а затем на ру­лонный материал. Полотнища изоляционного материала разглаживают по изо­лируемому основанию. Морщины и непроклеенные места не допускаются.

Оклеечная гидроизоляция не должна подвергаться постоянно действующим сдвигающим и растягивающим нагрузкам. Для предохранения от механических повреждений и оползней она должна быть защищена и зажата защитной конст­рукцией из бетона, железобетона, кирпича и т. д. При невозможности обеспе­чить прижим оклеечную гидроизоляцию применять не рекомендуется. Защитные покрытия из рулонных материалов, наклеенных на битумных составах,, должны быть прошпатлеваны битумными составами.

При выполнении работ по гидроизоляции наружных поверхностей стен под­валов следует принимать меры против попадания воды в пазухи траншеи или котлована и обрушения их стен.’После окончания работ пазухи засыпают с по­слойным трамбованием. В ряде случаев оклеечную гидроизоляцию защищают со стороны грунта глиняным замком, прижимными стенками из кирпича и т. д.

Готовая оклеечная гидроизоляция должна быть ровной, пузыри, вздутия, воз­душные мешки, непроклейки, разрывы, вмятины, складки, потеки, наплывы и механические повреждения гидроизоляции не допускаются. Прочность приклей­ки рулонных материалов и сцепления гидроизоляционных составов с основанием должна быть не менее 0,5 МПа. Прочность приклеивания рулонного материала проверяют путем пробного разрыва у его края или простукивания всей площади изоляции. Глухой звук свидетельствует о прочности изоляции. Дефектные места разрезают, просушивают и заклеивают заплатами.

Мембранная гидроизоляция является одной из разновидностей оклеенной гид­роизоляции с использованием передовых индустриальных технологий, когда многослойные изоляционные покрытия из традиционных рулонных битуминоз­ных материалов (пергамин кровельный, толь кровельный, рубероид) заменяют­ся однослойными полимерными мембранами из стойких к окислению и моро­зостойких полимерных компонентов. Суть мембранной гидроизоляции заклю­чается в применении тонких, эластичных, усиленных специальным рулонным материалом, специальных систем, способных нести большую нагрузку.

В отличие от прочих применяемых материалов толщина мембраны составля­ет всего 0,5 мм, что делает ее практически безусадочной при сжатии. Это позво­ляет при больших нагрузках на сжатие избежать растрескивания или выкраши­вания межплиточных швов. Диапазон эксплуатационных температур колеблется от —35 до +100 °С и выше, что позволяет использовать эту систему в холодиль­ных камерах и термических цехах. Область применения мембранной гидроизо­ляции практически не ограничивается, ею можно пользоваться в любых услови­ях работы, вплоть до сверхтяжелых.

Как правило, в стационарных (заводских) условиях предварительно собира­ются из вулканизованных полотнищ большие мембраны (ковры) площадью от 100 до 1000 м2. Для соединения укрупненных элементов в условиях строитель­ства применяются малогабаритные передвижные сварочные установки (для го­рячей вулканизации) и клеевые композиции (метод холодной вулканизации) и ленты (специальный скотч).

Литая изоляция устраивается в основном из асфальтовой массы или мастик, наносимых на горизонтальные и наклонные (не более 45°) поверхности, а также в виде шпонок в щелях и температурно-усадочных швах.

Под литой гидроизоляцией понимают создание сплошного водонепро­ницаемого слоя, образованного различным разравниванием, поярусной залив­кой растворов и мастик в щель между поверхностью сооружения и ограждения. В зависимости от используемых материалов различают горячую и холодную ли­тую гидроизоляцию. Материалом для литой гидроизоляции могут служить хо­лодная или горячая асфальтовая мастики или литые асфальтовые растворы.

Жесткая изоляция представляет собой затвердевший, прочно сцепившийся с изолируемой поверхностью слой цементно-песчаного раствора толщиной до 20— 26 мм или сплошное сварное водонепроницаемое ограждение строительных кон­струкций из стальных или пластмассовых листов (листовая гидроизоляция). Ее устраивают со стороны гидростатического напора воды с учетом его значения и характеристик защищаемых конструкций.

Горизонтальная жесткая цементно-песчаная гидроизоляция может быть уст­роена в зданиях с подвалами в двух уровнях: первый — у пола подвала, второй — в цокольной части на 200 мм выше уровня отмостки или тротуара. Ее выполняют в виде стяжки из цементного раствора состава 1:2 (цемент:песок) на портланд­цементе с уплотняющими добавками (алюминатом натрия и др.).

Цементно-песчаную гидроизоляцию осуществляют двумя способами: торкре­тированием и оштукатуриванием. Гидроизоляционный слой наносят сначала на стены и потолки и только после этого на полы с обязательной их очисткой от схватившегося раствора. Покрытия, подлежащие защите материалами на основе силикатных цементных составов, должны быть затерты по слою битумной нео­стывшей мастики или синтетических смол крупноразмерным кварцевым песком.

При устройстве цементной гидроизоляции из растворов с применением во­донепроницаемых расширяющихся или водонепроницаемых безусадочных це­ментов (ВРЦ, ВБЦ), или портландцемента с уплотняющими добавками составы следует наносить на смоченную водой поверхность основания. При примене­нии составов ВРЦ и ВБЦ готовая цементная гидроизоляция втечение 1 часа после нанесения должна предохраняться от механических воздействий; при примене­нии составов на портландцементе с уплотняющими добавками — в течение 2 су­ток после нанесения.

Технологии пополнились целой серией гидроизоляционных материалов из су­хих смесей, с увеличением водонепроницаемости, срока эксплуатации строитель­ных конструкций, повышением морозо — и коррозийной стойкости. Материалы используются в соответствии с технической документацией изготовителя.

Ручным способом цементную изоляцию наносят при относительно неболь­ших (до 100 м2) объемах работ, как правило, при безнапорных водах. Поверх­ность такой гидроизоляции в свежем состоянии рекомендуется затирать цемен­том («железнить»).

Каждый последующий слой должен быть нанесен на отвердевшую поверх­ность не позднее, чем через сутки после нанесения предыдущего слоя при при­менений портландцемента и не позднее, чем через 30 минут при применении ВВЦ или ВРЦ. До нанесения последующего слоя каждый отвердевший преды­дущий слой изоляции обдувают сжатым воздухом и смачивают водой, а в случае перерыва в работе — очищают пескоструйными аппаратами или стальной щет­кой с последующим обдуванием сжатым воздухом и смачиванием водой.

Гидроизоляционный слой на период твердения нужно предохранять от меха­нических повреждений, сотрясаний, высыхания и замораживаний в течение 7 су­ток при применении портландцемента и 6 часов при применении ВРЦ и ВБЦ. Хождение по полам с готовой цементной гидроизоляцией и транспортировка по ним материалов не допускается. Цементную гидроизоляцию на весь период твер­дения поддерживают во влажном состоянии, периодически смачивая ее распы­ленной струей воды без напора: при применении составов на ВРЦ и ВБЦ — че­рез 1 час после нанесения и через каждые 3 часа в течение суток; на портландце­менте с уплотняющими добавками — через 8—12 часов после нанесения, а затем 2—3 раза в сутки в течение 14 дней. Вместо смачивания можно наносить на све­жий гидроизоляционный слой паронепроницаемое пленочное покрытие из раз­жиженных битумов, лаков и пластмасс.

Проникающая гидроизоляция изготавливается из цемента с добавлением хими­чески активных веществ и измельченного песка и применяется для защиты ка­пиллярно-пористых материалов зданий и сооружений (бетона, цементно-пес­чаного раствора, кирпича и др.) от водопроницаемости, климатических и техно­генных форм коррозии. Принцип действия достаточно прост: смешанный с водой состав проникающей гидроизоляции наносится на поверхность материала кон­струкций здания (например, бетон), силами капиллярного подсоса и осмотичес­кой диффузии вещество в присутствии воды попадает в открытые поры бетона, активные компоненты состава вступают в химическую реакцию с цементным камнем бетона с образованием нерастворимых кристаллов и образуют нитеоб­разные кристаллы. Заполнение пор и полостей бетона нерастворимыми крис­таллами с большой удельной поверхностью обеспечивает его непроницаемость для воды, а также щелочей, кислот, нефти и ряда ее продуктов. Рост кристаллов останавливается при отсутствии воды и возобновляется при ее появлении, раз­вивая в глубину конструкции процесс уплотнения структуры бетона. Этот эф­фект носит название «самозалечивания» дефектов структуры бетона.

Таким образом, проникающая гидроизоляция становится составной частью бетона, образуя единую с ним прочную и долговечную структуру и при этом со­храняя его паропроницаемость. Проникающие составы могут применяться на­чиная с этапа изготовления конструкции (на свежий бетон) и до момента уст­ранения аварийного состояния здания или сооружения, наступившего в ходе эксплуатации. При этом данное покрытие можно наносить на защищаемую кон­струкцию как со стороны давления воды, так, и с противоположной стороны (например, внутри защищаемого подвального помещения без вскрытия фунда­мента).

В результате применения таких составов повышается водонепроницаемость бетонных или железобетонных конструкций (на 2—3 ступени), морозостойкость — не менее чем в 1,5 раза, поверхностная плотность бетона конструкций и проч­ность — не менее чем на 20%, приобретаются защитные свойства к агрессивному воздействию паров кислот, растворов солей и нефтепродуктов, а также средние биоцидные свойства.

Монтируемая гидроизоляция — это специальные противофильтрационные за­щитные экраны. В качестве их используют бентонитовые маты (состоят из слоя глины, заключенной в оболочки из картона или полипропиленовых полотен, сшитых иглопробивным способом; или полимерную мембрану. В первом случае картон в процессе эксплуатации разлагается в земле, а слой глины создает пре­граду подземным водам.

Игдопробивная прошивка обеспечивает равномерное распределение и фик­сацию гранул бентонита. Верхнее полотно — тканый полипропилен, проницае­мый для частиц геля натриевого бентонита, нижнее полотно — нетканый, через который может проходить только вода. Укладку материала осуществляют тка­ной стороной к защищаемой поверхности. В результате после гидратации ис­ключается вымывание геля бентонита и в местах нахлеста соседних полотен за счет частиц бентонита, выходящих на поверхность с тканой стороны, обес­печивается эффект «глиняного замка».

Укладка — в любое время года и практически при любых погодных условиях. Материалы выдерживают неограниченное число циклов «гидратация — дегид­ратация» и «замораживание — оттаивание». Бентонит натрия при увлажнении может увеличиваться в объеме в 14—16 раз, в замкнутом пространстве в структу­ре образующегося геля возникает напряженное состояние, водопроницаемость материала значительно снижается.

Экран из полимера состоит из полотна с округлыми шипами размером до 8 мм и фильтрующего текстиля. Последний предохраняет систему от заиливания час­тицами почвы, а округлые шипы образуют водосточные каналы, по которым от­фильтрованная вода уходит в дренажную систему. Это решение предотвращает просадку здания, обеспечивает хорошую гидроизоляцию стен, а также служит защитой плиты основания от капиллярного подсоса влаги.

Безопасность труда при выполнении гидроизоляционных работ. При ведении работ с применением горячего битума несколькими рабочими звеньями расстояние меж­ду ними должно быть не менее 10 м. В зону радиусом 10 м от рабочего места изоли­ровщика запрещается доступ лиц, не связанных непосредственно с работой.

Приготавливая грунтовку, состоящую из растворителя и битума, расплавлен­ный битум вливают в растворитель, а не наоборот.

Не разрешается использовать в работе битумные мастики температурой выше 180 °С. Переносить горячие мастики разрешается в конусных ведрах с крышка­ми, заполняя их на 3/4 объема.

Изоляционные работы в закрытых помещениях могут производиться только при должном освещении и вентиляции.

При выполнении работ необходимо иметь первичные средства пожаротуше­ния, исправные лестницы, приспособления, ограждения, соблюдать правила безопасности при работе на высоте и при выполнении работ с мастиками и при наплавлении материалов. Защитная обувь рекомендуется с удобной подошвой, которая не оставляет отпечатков.

Вопросы для самопроверки

1. Что такое коррозия и какие меры защиты от нее вы знаете?

2. Какие виды теплоизоляции вы знаете?

3. Какие виды гидроизоляции известны?

4. Как устраивается окрасочная гидроизоляция из битумных мастик?

5. Как производится оклеечная (вертикальная и горизонтальная) гидроизо­ляция из изоляционных рулонных материалов?

6. Как оклеивают поверхности стен?

7. Какие инструменты и инвентарь применяются при устройстве цементной или асфальтовой гидроизоляции?

8. Какие инструменты и инвентарь применяются при устройстве наплавляе­мой рулонной гидроизоляции?

9. Как выполняются работы по гидроизоляции наружных поверхностей стен подвалов?

10. Какие требования по безопасности труда надо выполнять при производ­стве гидроизоляционных работ?

Тест

1. Разрушение твердых тел, вызванное химическими и электрохимическими процессами, развивающимися на поверхности тела при его взаимодействии с внешней средой, называется:

а) коррозией;

б) теплоизоляцией;

в) гидроизоляцией;

г) звукоизоляцией.

2. Защита зданий, узлов, конструкций и сооружений, холодильных камер, трубопроводов и др. от нежелательного теплового обмена с окружающей средой:

а) теплоизоляция;

б) коррозия;

в) гидроизоляция;

г) звукоизоляция.

3. Защита строительных конструкций покрытиями из гидрофобных материа­лов от воздействия воды и других жидкостей во избежание потерь их эксплуата­ционных качеств или разрушения:

а) теплоизоляция;

б) коррозия;

в) гидроизоляция;

г) звукоизоляция.

4. К жесткой гидроизоляции относится:

а) цементно-песчаная;

б) окрасочная;

в) оклеечная;

г) нетвердеющая.

5. К пластичной гидроизоляции относится:

а) цементно-песчаная;

б) листовая;.

в) оклеечная;

г) проникающая.

6. Количество слоев, наносимое при устройстве окрасочной гидроизоляции:

а) не менее одного;

б) не менее двух;

в) не менее трех;

г) не менее пяти.

7. Высота, на какую выполняют вертикальную гидроизоляцию выше уровня грунтовых вод, должна быть:

а) не ниже уровня грунтовых вод;

б) 0,25 м выше уровня грунтовых вод;

в) 0,5 м выше уровня грунтовых вод;

г) 1 м выше уровня грунтовых вод.

8. При наклеивании рулонных материалов стыки рядов полотнищ располагают:

а) стыки должны совпадать;

б) вразбежку, на расстоянии не менее 30 см один от другого;

в) вразбежку, на расстоянии не менее 50 см один от другого;

г) допускается разрыв не более 10 см.

9. Правила приготовления грунтовки, состоящей из растворителя и битума:

а) не регламентируются;

б) расплавленный битум вливают в растворитель;

в) растворитель вливают в расплавленный битум;

г) не допускаются.

10. Максимальная температура использования в работе битумных мастик:

а) не регламентируется;

б) не выше 80 °С;

в) не выше 180 °С;

д) не выше 270 °С.

Ключ

1

2

3

4

5

6

7

8

9

10

а

а

в

а

в

б

в

б

б

в

Крыша (покрытие) — это верхняя ограждающая конструкция здания, одновре­менно выполняющая несущие, гидроизолирующие, а при бесчердачных (совме­щенных) крышах и теплых чердаках, еще и теплоизолирующие функции. Во все времена возведению крыш на домах уделялось особое внимание, постоянно со­вершенствовались их конструкции, технологии устройства, применялись новые материалы.

Верхний водоизоляционный слой крыши (покрытия), предохраняющий зда­ние от атмосферных воздействий, воспринимающий расчетные эксплуатацион­ные нагрузки, называется кровлей, а строительные работы по ее устройству — кровельными работами.

Кровля должна быть водонепроницаемой, легкой и долговечной (прочной, несгораемой). На выбор вида кровли и кровельных материалов влияет много факторов:

♦ назначение здания (жилой дом, промышленное здание и др.);

♦ архитектурные требования и традиции, вкус застройщика (конструкция и сложность профиля крыши);

♦ климатические особенности данной местности (длительность воздействия высоких и низких температур, ветровые нагрузки, ультрафиолетовое об­лучение в составе солнечной радиации, снеговая нагрузка).

Кровельные материалы подразделяются на жесткие и мягкие.

Кровли из жестких материалов применяют в основном при устройстве скат­ных чердачных крыш. К жестким относятся листы асбестоцементные профилиро­ванные, плитки кровельные асбестоцементные плоские, глиняная и цементно­песчаная черепица, сталь листовая кровельная, стальной и алюминиевый про­филированный настилы, плоские и волнистые листы из пластика и других материалов.

Мягкие кровельные материалы (рулонные кровельные материалы на битум­ной, битумно-полимерной и полимерной основе, а также мастичные составы) предназначены для применения в любых видах зданий.

Применяются и устаревшие виды кровельных материалов, например соломен­ные, камышитовые, а также деревянные материалы (гонт, щепа, тес).

Контроль качества бетона

Контроль качества уложенного бетона заключается в провер­ке соответствия его физико-механических характеристик требо­ваниям проекта. Обязательно проверяют прочность бетона на сжатие. Бетон для дорожного и аэродромного строительства ис­пытывают также на растяжение при изгибе. Бетон испытывают на прочность при осевом растяжении, растяжении при изгибе, на морозостойкость и водонепроницаемость по требованиию проекта.

Прочность на сжатие бетона проверяют на контрольных об­разцах, изготовленных из проб бетонной смеси одного состава* отобранных после ее приготовления на бетонном заводе, а также непосредственно на месте бетонирования конструкций.

Остальные физико-механические характеристики бетона опре­деляют по контрольным образцам, изготовленным из проб, отоб­ранных на бетонном заводе.

Контрольные образцы бетона, изготовленные из проб бетон­ной смеси на бетонном заводе, хранят в камере нормального твер­дения при температуре воздуха (20±2)°С и относительной влаж­ности не менее 90% до момента испытаний их в возрасте, соот­ветствующем достижению проектной марки.

Контрольные образцы, изготовленные у места бетонирования, хранят в условиях твердения бетона конструкции и испытывают в назначаемые лабораторией сроки в зависимости от фактичес­ких условий вызревания бетона конструкций с учетом необходи­мости достижения к моменту испытаний проектной марки.

Образцы для испытания бетона на сжатие должны иметь форму куба с длиной ребер 7, 10, 15, 20 и 30 см или цилиндра диаметром 7, 10, 15, 20 и 30 см и высотой, равной соответственно одному или двум диаметрам.

Размеры образцов выбирают с учетом наибольшей крупности заполнителей бетона (ГОСТ 10180—78). Полученные результаты испытаний образцов приводят к пределу прочности при сжатии эталонного образца — куба с длиной ребер 15 см. Для этого умно­жают полученные при испытании образцов пределы прочности при сжатии на переводные коэффициенты, которые принимают по ГОСТ 10180—78 или устанавливают опытным путем.

Прочность бетона при сжатии оценивают по результатам ис­пытания контрольных образцов в соответствии с ГОСТ 18105.0—80.

В качестве основного метода контроля и оценки однородности и прочности бетона при сжатии применяют систематический ста­тистический контроль.

Нестатистический метод контроля допускается применять при бетонировании отдельных монолитных конструкций, когда неболь­шие объемы бетона не позволяют получить в установленные ГОСТ 18105.2—80 сроки необходимое для статистического контроля количество серий контрольных образцов.

Для контроля прочности бетона на строительной площадке статистическим методом подлежащие бетонированию конструк­ции разбивают на технологические комплексы. В качестве техно­логического комплекса условно принимают группу одновременно бетонируемых и выдерживаемых в одинаковых условиях моно­литных конструкций из бетона одного состава.

Бетон технологического комплекса разбивают на партии. В ка­честве партии принимают объем бетона, уложенного в конструк­ции одного технологического комплекса за период, не превышаю­щий 1 сут. Для контроля от каждой партии бетонной смеси ■отбирают не менее двух проб из разных замесов или транспорт­ных емкостей.

Объем пробы должен приниматься с учетом обеспечения изго­товления одной серив образцов, предназначенной для контроля прочности в возрасте, соответствующем достижению проектной марки, и дополнительных серий для промежуточного нестатисти­ческого контроля в соответствии с требованиями проекта и нор­мативных документов. Каждая серия состоит из трех контроль­ных образцов.

Контрольные образцы изготовляют и испытывают в соответст­вии с требованиями ГОСТ 10180—78.

Если в результате испытаний образцов будет выявлено, что бетон не удовлетворяет предъявленным к нему требованиям, то состав бетонной смеси для дальнейшего бетонирования должен быть соответственно исправлен, а возможность использования возведенных конструкций установлена совместно с проектной ор­ганизацией.

В ответственных сооружениях качество уложенного бетона по требованию проекта определяют испытанием выбуренных из со­оружения образцов (кернов).

Для определения качества бетона в конструкциях и сооруже­ниях и при производственном контроле наряду с механическими (разрушающими) методами испытания образцов применяют раз­личные методы испытания бетона без разрушения образцов (не­разрушающие).

Применение неразрушающих методов является обязательным в случаях, когда определение прочности бетона разрушающими методами невозможно.

Наиболее распространенный из неразрушающих методов — ультразвуковой импульсный метод определения прочности бетона с помощью специальной электронной аппаратуры (ГОСТ 17624— 78). Этот метод основан на сравнении скорости прохождения ультразвуковой волны в конструкции со скоростью ее прохожде­ния в эталонных образцах, изготовленных и выдержанных в та­ких же условиях, как и конструкция. Эталонные образцы данно­го состава бетона испытывают сначала с помощью ультразвука, а затем при сжатии на прессе, в результате чего определяют зави­симость между скоростью ультразвука и прочностью бетона. Зная эту зависимость, сравнительную прочность бетона на сжатие в конструкции можно определить по скорости ультразвука в любом месте и в любое время без вырезки или изготовления образцов.

Ультразвуковой метод удобен для повседневного контроля за нарастанием прочности бетона, а также для определения его однородности и обнаружения дефектных мест внутри конструкции (например, каверн, недостаточно провибрированных мест).

Прочность и однородность бетона при применении неразру­шающих методов испытаний контролируют и оценивают в соот­ветствии с ГОСТ 21217—75.

Исправление дефектов бетона

Несоблюдение правил производства работ может привести к образованию некоторых дефектов бетона (мелким и крупным раковинам, неровностям), которые могут быть в дальнейшем устранены.

Поверхности открытых конструкций с мелкими раковинами, не имеющие общей ноздреватости, затирают цементным раство­ром состава 1:2… 1:2,5. Для этого поверхность бетона расчища­ют стальными щетками или пескоструйным аппаратом, промыва­ют водой, набрасывают кельмами цементный раствор слоем

3.. .4 мм и немедленно затирают деревянными терками.

Если на бетоне получились крупные раковины (пустоты, обра­зующиеся из-за скопления гравия, не заполненного раствором), то их расчищают на всю глубину, удаляя слабый бетон. Расчи­щенные раковины продувают сжатым воздухом и промывают струей воды под напором, после чего заполняют бетоном той же марки, что и бетон конструкции, но с заполнителем крупностью не более 20 мм. Уложенную смесь тщательно уплотняют.

Замазывать крупные раковины цементным раствором не раз­решается, так как это не устраняет дефекта в бетоне, а только скрывает его. В результате усадки при твердении раствора проч­ного сцепления его с бетоном не. происходит. Крупные раковины* ослабляющие сечение несущих элементов железобетонных конст­рукций, после расчистки и промывки заделывают торкретирова­нием или бетонированием под давлением. Отверстия, в частности от болтов, заполняют цементным раствором под давлением.

Некоторые массивные блоки оказываются водопроницаемыми из-за некачественного уплотнения бетонной смеси при укладке. Для устранения этого дефекта производят цементацию — нагне­тание цементного раствора в специально пробуренные в бетоне скважины диаметром около 50 мм. Чтобы повысить водонепрони­цаемость бетона в туннелях, цементный раствор нагнетают за их обделку. В ответственных сооружениях при заделке отверстий* раковин применяют расширяющийся и безусадочный цементы.

Если на горизонтальной неопалубленной бетонной поверхности образовались наплывы, их тут же удаляют кельмой, на верти­кальных опалубленных поверхностях — срубают после распалуб — ливания пневматическим или электрическим молотком. Выбоины* образовавшиеся на поверхности при удалении наплывов, затира­ют цементным раствором состава 1:2.

При неправильном производстве работ могут быть более серь­езные дефекты, например слоистое строение бетона, недостаточ­ная его прочность, значительные просадки и прогибы отдельных частей конструкций, сквозные раковины больших размеров. Их часто невозможно устранить или исправить. Чтобы избежать это­го, необходимо тщательно соблюдать правила производства бе­тонных работ.

ТЕХНИКА БЕЗОПАСНОСТИ ПРИ БЕТОННЫХ РАБОТАХ. В ЗИМНИХ УСЛОВИЯХ

При бетонных работах в зимнее время необходимо соблюдать определенные правила.

Паропровод, подающий пар в бункера для подогрева заполни­телей, в паровые рубашки и другие приспособления, а также вен­тили и краны тщательно изолируют во избежание ожогов рабочих.

Паровые рубашки не должны иметь щелей или отверстий, про­пускающих пар. Давление пара в месте выхода из паропровода не должно превышать 0,05 МПа.

На участках паропрогрева круглосуточно должны дежурить слесари, прошедшие инструктаж по технике безопасности.

Площадка для электроразогрева бетонной смеси должна иметь специальное ограждение с воротами (или другими закрывающими­ся проемами) для въезда автотранспорта с бетонной смесью. По­сторонним лицам запрещается находиться на площадке.

Корпуса бадей, бункеров и кузовов бетоновозов в процессе электроразогрева бетонной смеси должны быть надежно зазем­лены.

К работам по электропрогреву бетона допускаются только ра­бочие и технический персонал, знающие безопасные методы рабо­ты и проинструктированные по вопросам оказания первой помощи при поражении током. Во время работ должны дежурить квалифи­цированные электромонтеры.

Электропрогрев бетонных и железобетонных конструкций сле­дует производить при напряжении тока не выше 127 В. Напряже­ние тока в сети 220 В можно использовать для прогрева неармиро­ванного бетона, а также отдельно стоящих железобетонных кон­струкций, не связанных общим армированием с соседними участками, на которых в это время производится работа.

При обогреве бетона внешними электронагревателями (при не­возможности замыкания на арматуру) можно использовать напря­жение до 380 В. Напряжением тока более 380 В при электропро­греве бетона пользоваться нельзя.

При электропрогреве бетона и железобетона зона электропро­грева должна быть оборудована надежным ограждением, установ­ленным на расстоянии не менее 3 м от прогреваемого участка, сис­темой блокировок, световой сигнализацией, предупредительными плакатами.

Обслуживающий персонал должен быть дополнительно проин­структирован.

Нейтраль трансформатора, обслуживающего силовую сеть, должна быть заземлена. На участках электропрогрева и местах ус­тановки оборудования для электропрогрева вывешивают предупре­дительные плакаты с надписями: «Опасно», «Под напряжением» и т. п., а также правила оказания первой помощи при поражении током.

В пределах зоны электропрогрева устанавливают сигнальные лампы, загорающиеся при подаче напряжения на линию. Сигналь­ные лампы подключают таким образом, чтобы при их перегорании автоматически отключалась подача напряжения на линию.

Все рабочие места в ночное время должны быть хорошо осве­щены.

На участках, находящихся под напряжением более 60 В, пребы­вание людей и выполнение каких-либо работ не разрешается.

На участках, находящихся под напряжением не более 60 В, можно выполнять электромонтажные работы специальным монтер­ским инструментом с применением диэлектрических перчаток и га­лош.

Напряжение в сети на электродах следует проверять только специальными приборами: токоискателями, амперметрами, вольт­метрами, переносными электролампами.

Незабетонированную арматуру, связанную с прогреваемым участком, следует тщательно заземлить.

Температуру бетона под напряжением можно измерять только находясь в резиновой обуви и диэлектрических перчатках. При этом нельзя опираться рукой на конструкцию. Измерять темпера­туру следует по возможности одной рукой, вторая рука должна быть свободной.

Устанавливать новые плавкие вставки у предохранителей вза­мен сгоревших, а также производить какой-либо ремонт электро­оборудования следует только после отключения напряжения.

Поливать бетон можно, отключив напряжение.

При электропрогреве конструкций в термоактивной опалубке прикасаться к ней нельзя.

В сырую погоду (при относительной влажности воздуха 90% и более) и во время оттепели все виды электропрогрева бетона на открытом воздухе должны быть прекращены.

К работам по приготовлению растворов хлористых солей для бетона с противоморозными добавками допускаются лица, обучен­ные безопасным методам работы (хлористые соли опасны для ко­жи рук) и снабженные спецодеждой, респираторами, очками и ру­кавицами. При укладке бетонной смеси с противоморозными до­бавками, обладающей повышенной электропроводностью, необхо­димо тщательно следить за тем, чтобы у проводов, подводящих ток к вибраторам, не была повреждена изоляция.

Монтаж структур типа «Кисловодск»

Укрупнительная сборка блока выполняется непосредственно у мест* подъема при заранее выставленных несущих колоннах.

При сборке блок смещают относительно осей колонн, чтобы колонны находились между элементами структуры и дали возможностк его вертикального подъема (рис. 7.13 и 7.14).

Масса поднимаемого блока нс должна превышать 28 т, что определяется несущей способностью стержневых элементов в опорной части структуры. Точки строповки строго фиксированы на каждом тине блоков.

Монтируется блок обычно двумя кранами с помощью специальных ipnm-pc, которые обеспечивают равномерную передачу монтажных усилий ни нее элементы структуры.

Одновременной работой кранов блок поднимают на 15-20 см от поверхности и выдерживают 10-20 мин для проверки надежности кшепления.

Затем блок поднимают на 2,5 м, подводят временные четыре опоры и ни них опускают блок. К блоку снизу в проектном месте крепят четыре ►ппители.

Затем двумя кранами блок поднимают на 20-30 см выше опорных — нитей колонн и маневром кранов и ручных оттяжек придают ему проектное положение и опускают на опоры. При этом краны маневрируют — і целой и полиспастом поочередно, то есть при неподвижном смежном ► ране. Структуры типа «Кисловодск» можно устанавливать также с помощью двух монтажных мачт или двух шевров (рис. 7.14, 7.15).

Рис 7.15 Схема монтажа блока покрытия типа «Кисловодск» двумя шеврами

1 — блок покрытая; 2 — шевр; 3 — траверса; 4 — временные опоры; 5 — нахладной якорь Q = 16 т; 6 — электролебедка Q « 5 г, 7 — накладной якорь Q ж 6,3 г, 8 — расчалка шевра;

9 — винтовая стяжка; 10 — оттяжка из стального каната; 11 — соединительная тяга

КОНТРОЛЬ КАЧЕСТВА БЕТОННЫХ РАБОТ

Качество бетонных работ в зимних условиях контролируют со­гласно общим требованиям, учитывая следующие дополнительные условия.

В процессе приготовления бетонной смеси контролируют не ре­же, чем через каждые 2 ч:

отсутствие льда, снега и смерзшихся комьев в неотогреваемых заполнителях, подаваемых в бетоносмеситель, при приготовлении бетонной смеси с противоморозными добавками;

температуру воды и заполнителей перед загрузкой в бетоно­смеситель;

концентрацию раствора солей;

температуру смеси на выходе из бетоносмесителя.

При транспортировании бетонной смеси один раз в смену про­веряют выполнение мероприятий по укрытию, утеплению и обогре­ву транспортной и приемной тары.

" При предварительном электроразогреве смеси контролируют температуру смеси в каждой разогреваемой порции.

Перед бетонированием проверяют отсутствие снега и наледи на поверхности основания, стыкуемых элементов, арматуры и опалуб­ки, следят за соответствием теплоизоляции опалубки требованиям технологической карты, а при необходимости отогрева стыкуемых поверхностей и грунтового основания — за выполнением этих ра­бот.

При бетонировании контролируют температуру смеси на вы­грузке из транспортных средств, температуру уложенной бетонной смеси. Проверяют соответствие гидроизоляции и теплоизоляции нс- опалубленных поверхностей требованиям технологических карт.

В процессе выдерживания бетона температуру контролируют и следующие сроки:

при применении способов термоса, предварительного электро­разогрева бетонной смеси, парообогрева в тепляках — каждые 2 ч в первые сутки, не реже двух раз в смену в последующие трое су­ток и один раз в сутки в остальное время выдерживания;

при использовании бетона с противоморозными добавками—3 раза в сутки до приобретения им заданной прочности;

при электротермообработке бетона в период подъема темпера­туры со скоростью до 10°С в час — через каждые 2 ч, в дальней­шем — не реже двух раз в смену.

По окончании выдерживания бетона и распалубливания конст­рукции замеряют температуру воздуха не реже одного раза в смену.

Температуру бетона измеряют дистанционными методами с ис­пользованием температурных скважин, термопар, термометров со­противления, либо применяют технические термометры.

Температуру бетона измеряют на участках, подверженных наи­большему охлаждению (в углах, выступающих элементах) или на­греву (у электродов, на контактах с термоактивной опалубкой на глубине 5 см, а также в ядре массивных блоков гидротехнических и других сооружений).

Количество точек, в которых измеряется температура, указы­вается в технологической карте.

Результаты замеров записывают в ведомость контроля темпе­ратур.

При электротермообработке бетона не реже двух раз в смену контролируют напряжение и силу тока на низовой стороне питаю­щего трансформатора и замеренные величины фиксируют в спе­циальном журнале.

Прочность бетона контролируют в соответствии с требования­ми, изложенными в § 19, и путем испытания дополнительного коли­чества образцов, изготовленных у места укладки бетонной смеси, в следующие сроки:

при выдерживании по способу термоса и с предварительным электроразогревом бетонной смеси — 3 образца после снижения температуры бетона до расчетной конечной, а для бетона с проти­воморозными добавками — 3 образца после снижения температу­ры бетона до температуры, на которую рассчитано количество до­бавок, 3 образца после достижения бетоном конструкций положи­тельной температуры и 28-суточного выдерживания образцов в нормальных условиях, 3 образца перед загружением конструкций нормативной нагрузкой. Образцы, хранящиеся на морозе, перед пінитимем выдерживают 2—4 ч для оттаивания при температу­рі’ |Г> -20°С;

при обогреве паром или теплым воздухом — 3 образца по окон­чании обогрева и 3 образца после дополнительного 28-суточного выдерживания в нормальных условиях.

При электропрогреве, обогреве в термоактивной опалубке и ин­дукционном прогреве бетона выдерживание образцов-кубов в ус­ловиях, аналогичных прогреваемым конструкциям, как правило, неосуществимо. Поэтому в этих условиях прочность бетона конт­ролируют, обеспечив соответствие фактического температурного режима заданному.

При всех способах зимнего бетонирования необходимо прове­рять прочность бетона в конструкции церазрушающими методами или путем испытания высверленных кернов, если контрольные об­разцы не могут быть выдержаны при режимах выдерживания конструкций.

Організація містечок будівельників

У водогосподарському будівництві житлова база містечок будівельників формується з тимчасових інвентарних будівель, які при монтажі потребують мінімальних трудозатрат і надають побутові комфортні умови. Житловий фонд тимчасових буді­вель формується трьох типів:

1) пересувні будівлі на автомобільному шасі, на санях, на за­лізничній платформі;

2) контейнерного типу, які складаються з певних блоків;

3) з інвентарних щитових збірно-розбірних будівель.

Пересувні інвентарні будівлі обладнуються опаленням, меб­лями, системою електроживлення, інколи системою мікрокліма­ту. Інвентарні контейнерні будівлі є двох серій:

одно — і двохквартирні одноповерхові;

чотирьохквартирні двоповерхові.

Щитові збірно-розбірні будівлі складаються з окремих, пев­ного функціонального призначення, кімнат:

житлова кімната — 15,2 м ;

блок (прихожа, туалет, душ або ванна);

блок-кухня — 7,0 м2;

східці.

Чисельність працюючих на об’єктах будівництва, як правило, визначається за трьома способами:

1) за укрупненими показниками середньорічного виробітку в грошовому виразі на одного працюючого; цей спосіб застосову­ється на стадії ТЕО, коли основні фізичні обсяги невідомі, а ві­дома орієнтовна вартість будівництва водогосподарського об’єкту;

2) за фізичними обсягами робіт на основі середньої потреби у робочій силі на одиницю виміру виконання окремих робіт або частини будівлі; цей розрахунок ведеться за ДБН на стадії вико­нання проектної документації за розділом ПОБ;

3) за фізичними обсягами робіт на основі виробітку за виро­бничими нормами; цей спосіб застосовується на стадії розробки ПВР і дає найточніші результати.

За першим способом загальна чисельність працюючих визна­чається за формулою:

N3as=N1+N2, (5.11)

де N1 — чисельність робітників, які зайняті на будівництві осно­вних і допоміжних споруд будівельного комплексу;

Ni=S/Wt, (5.12)

St — загальний річний обсяг будівельно-монтажних робіт, гри.;

Wt — середньорічний виробіток на одного працюючого в буді­вельній організації, який визначається за формулою

Wt = W6(l+c■ t), (5.13)

We — середньорічний виробіток на одного працюючого, який приймається для базисного року будівництва, гри.;

t — число років з базисним виробітком від базисного року до розрахункового;

с — щорічний приріст продуктивності праці, який приймаєть­ся у розмірі 3.. .5%;

N2 — чисельність працюючих, які зайняті в експлуатаційних, обслуговуючих, постачальних організаціях та на будівництві мі­стечка для будівельників

N2=0,4Ni. (5.14)

Орієнтовно, чисельність робітників, інженерно-технічних працівників (ІТП), службовців та молодшого обслуговуючого персоналу (МП), які проживають у містечку будівельників, роз­раховують за табл. 5.1.

Таблиця 5.1

№№

з/п.

Вид будівництва

Категорії працівників в % від загальної чисельності

робітники

ІТП

службовці

моп

1.

Водогосподарське

83

13

3

1

2.

Сільське

83

13

3

1

3.

Житлове

85

8

5

2

4.

Промислове

83…86

10.13

3.4

1.2

Співвідношення категорій працівників залежно від виду будівництва

5.4. Тимчасові інвентарні будівлі

Подпись: Рис. 5.1. Інвентарні тимчасові будівлі контейнерного типу

За типами збірно-розбірні будівлі поділяються на пересувні, контейнерні і збірно-розбірні (рис. 5.1).

Пересувні (на колесах, на лижах) будівлі найбільш ефектив­ний тип тимчасових будівель, оскільки їх можна пересувати за допомогою автомобілів, тягачів чи тракторів. Час облаштування і встановлення їх на місці обмежується годинами. Будівлі цього типу найбільш відповідають вимогам мобільності, але в той же час вони є найдорожчими.

Будівлі контейнерного типу не мають ходової частини, тому на будівельний майданчик їх доставляють на автопричепах, а при невеликих відстанях — на лижах за допомогою тракторів.

Такі будівлі являють собою комфортне тимчасове житло для будівельників: спальні вагони, гуртожитки, будівельні вагончи­ки, блок-пости охорони, офіси, штаби будівництва, сушарки, їдальні, санітарні вузли.

Збірно-розбірні тимчасові будівлі заводського виготовлення представляють собою дерев’яний або металевий каркас, який ззовні обшивається металевими листами або фанерою (дошка­ми), а в середині — найчастіше фанерою, дошками у композиції з теплоізоляційними матеріалами (шлак, мінеральна повсть, піно­пласт, тощо). Збірно-розбірні тимчасові будівлі менш економіч­ні, але їх каркасно-панельна або панельна конструкція дозволяє монтувати їх з об’ємних елементів за досить короткий проміжок часу (рис. 5.2).

Якість виробів підтверджена "Сертифікатом відповідності", виданим органом сертифікації «ЦентрСЕПРОбудметал».

Вагон-будинки можуть бути багатомодульними, встановлю­ватися в два поверхи, що особливо зручно для будівельних май­данчиків.

Організація містечок будівельниківРис. 5.2. Збірно-розбірна тимча­сова будівля

Крім того, до збірно-розбірних конструкцій відносять будівлі пневматичного типу, які зроблені на основі легких синтетичних тканин і плівок.

Витрати на тимчасові будівлі і споруди регламентовані і не повинні перевищувати для обжитих районів 4%, а для необжи — тих — 5% від кошторисної вартості будівництва.

За нормативними показниками на 1 проживаючого (табл. 5.2) проектується містечко будівельників.

Таблиця 5.2

Показники для визначення площ тимчасових будівель

Приміщення

Призначення

Одиниця виміру на 1 чол.

Нормативні

показники

1

2

3

4

І. Санітаоно — побутові приміщення

Гардеробна

Переодягання і зберігання спецодягу (подвійна шафа)

м2

0,7 на 1 чол. 1 на 1 чол.

Приміщення для

обігрівання

робітників

Обігрів., відпочинку і вживання іжі

м2

1 на 1 чол..

Умивальня

Санітарно — гігієнічне обслуговування робітників

м2

0,5 на 1 чол.

Приміщення для особистої гігієни жінки

Санітарно — гігієнічне обслуговування робітників

кран

1 на 15 чол.

Душова

Санітарно — гігієнічне обслуговування робітників

м2

кабіна

0,035 на 1 чол. 1 на 15 чол.

Туалет

Санітарно-гігієнічне обслуговування робітників

м2

сітка

0,54 на 1 чол. 1 на 12 чол.

Медпункт

Надання першої медичної допомоги

м2

0,1 на 1 чол.

Сушарка

Сушіння спецодягу і спецвзуття

м2

70 на

300…1200 чол.

їдальня

Забезпечення робітників гарячим харчуванням

м2

0,2 на 1 чол.

Умивальня

Санітарно-гігієнічне обслуговування робітників

м2

0,6 на 1 чол.

Буфет

Забезпечення робітників гарячим харчуванням

посадоч­не місце м2

1 на 4 чол. 0,2 на 1 чол.

Приміщення для відпочинку

Відпочинок

м2

0,7 на 1 чол.

2. Службові поиміщення

Виконробська

Розміщення адміністратив­но — технічного персоналу

м2

24 на 5 чол.

Диспетчерська

Оперативне керівництво будівельним об’єктом

м2

7 на 1 чол.

Кабінет з охо-

Навчання робітників вимо-

м2

рони праці

гам охорони і техніки без-

20 на

пеки, правилам пожежної безпеки

1000 чол.

3. Громадські поиміщення

Приміщення для

Проведення занять, зборів і

м2

36 на 100…400

відпочинку

інших заходів

чол.

Найменування тимчасових будівель, їх характеристики та кількість приймається залежно від чисельності особового скла­ду працівників, які здійснюють будівництво об’єкту (табл. 5.3).

Таблиця 5.3

Тимчасові будівлі будівельних організацій_________

Найменування

будівлі

Розміри, м

Корисна

2

площа, м

Шифр

типового

проекту

Тип

будівлі

Адміністративні приміщення

Контора

6,9×6,0x2,6

41,4

420-04-10

К

начальника дільниці

6,04×3,0x2,65

18,1

спд

к

Контора

6,0×2,7×2,68

16,2

420-04-38

к

виконроба

6,0×3,0x2,64

16,7

420-13-1

к

АТС і радіовузол

9,0×2,7×2,6

22,0

420-01-12

п

Санітарно — побутові приміщення

Гардеробні

6,0×2,7×2,68

14,4

420-04-21

к

9,0×3,0x2,54

20,7

420-13-2

к

Приміщення для обігріву робітників

6,0×2,7×2,68

14,5

420-04-9

к

Теж для сушіння одягу та взуття

9,0×2,7×2,6

22,0

420-01-13

п

Сушильня

7,91×2,72×2,69

20,5

420-01-13

п

Подпись: Душова 9,04x3,0x3,0 24,4 СПД- М К Вбиральня 6,0x2,7x2,68 14,3 420-04-23 п Побутові приміщення 13,58x9,0x2,55 117,7 420-02-03 3 12,02x6,9x2,68 75,5 420-04-33 3 Медпункт 12,02x6,9x2,68 75,0 420-04-30 к їдальня 16,28x9,0x2,55 140,0 420-02-2 к Складські приміщення Склад матеріальний і інструментальний 6,0x3,0x2,54 16,7 420-13-3 к Склад для обладнання 6,0x2,7x2,68 14,5 420-04-40 к Виробничі приміщення Слюсарно - механічна майстерня 27,0x3,0x2,65 77,0 СПД к Електромеханічна майстерня 4,27x2,35x2,11 9,2 ПЕМ-2П-4 п Малярна станція 4,25x2,5x2,57 10,6 ПМС п Примітка: к - контейнерний; п - пересувний; з - збірно-розбірний.

Для зразка орієнтовний склад тимчасових будівель і спо­руд, який повинен бути у містечку будівельників, при будівни­цтві осушувальної системи площею до 500 га наведено у табл.

5.4.

Подбор грузозахватных приспособлений

Для подъема, перемещения и укладки труб применяют специальные грузозахватные приспособления (рис. 6.2), для подъема длинномерных труб используют специальные траверсы, а для подъема плети стального трубопровода кранами-трубоукладчиками при ее прокладке — троллейные подвески, позволяющие осуществлять подъем трубопровода для его очистки и изоляции при одновременном поступательном передвижении кранов-трубоукладчиков вдоль траншеи.

Для подъема и укладки в траншею, например, изолированного стального трубопровода используются так называемые мягкие полотенца (рис. 6.2, г).

Подбор грузозахватных приспособлений

Рис. 6.2. Захваты для подъема труб: а — петлевой строп; 6 — захват-удавка; в — захваты для металлических труб; г — захват-полотенце для труб с изоляцией

Выбор крана для прокладки трубопроводов

Как и в случае выбора кранов для монтажа строительных конструкций, краны для прокладки трубопроводов также выбирают в два этапа. Вначале, на 1 этапе выбирают несколько технически пригодных типов или марок кранов по вылету стрелы их крюка и грузоподъемности, а на 2 этапе по технико-экономическим показателям вариантов кранов выбирают наиболее экономичный кран, который и принимают для трубоукладочных работ.

Для прокладки трубопроводов отдельными трубами из чугунных, а также железобетонных, керамических и асбестоцементных труб с раскладкой их на берме траншеи, когда в процессе их укладки требуется поворот стрелы крана с трубой к траншее, применяются мобильные стреловые краны — автомобильные, пневмоколесные или гусеничные нужной грузоподъемности.

Укладку изолированных плетей стальных трубопроводов в полевых условиях ведут кранами-трубоукладчиками. Исходя из условия предотвращения обрушения стенки, расстояние от бровки до крана — трубоукладчика должно составлять не менее 2 м.

Реклама
Октябрь 2015
Пн Вт Ср Чт Пт Сб Вс
« Сен   Ноя »
 1234
567891011
12131415161718
19202122232425
262728293031  
Рубрики