Архивы за Октябрь 2015

УСТАНОВКА ДЛЯ НЕМЕДЛЕННОГО РАСПАЛУБЛИВАНИЯ

Изготовление изделий в опрокидываемой деревянной опалубке ведут в следующем порядке: 1) укладывают и тщательно разгла­живают в форме тонкую, смоченную в воде ткань и устанавливают арматурный каркас; 2) распределяют, уплотняют и заглаживают в форме бетонную смесь; 3) покрывают форму щитом-поддоном и скрепляют его с формой стяжками или хомутами; 4) на выступаю­щие продольные борта формы надевают тросы, проходящие через ролики траверсы, и поднимают форму на 0,5—0,6 м; подъем фор­мы осуществляют также зацепляя захваты траверсы за цапфы на форме; 5) два рабочих, взявшись за выступающие концы бортов, быстро, но без рывков, переворачивают форму на 180°, опускают ее, затем освобождают стяжные хомуты или другие крепления формы с поддоном и осторожно поднимают форму с изделия, оставляя его на поддоне. После подъема формы ткань остается на бетоне изделия и ее необходимо снять, а после 5—6-кратного ис­пользования прополоскать в чистой воде. При формах столярной работы возможно изготовление изделий без прокладки ткани.

Технология изготовления изделий в металлических опрокидных формах аналогйчная, но в форму не укладывают ткань^ а лишь тщательно смазывают ее поверхность, соприкасающуюся с бето­ном, составами, исключающими сцепление бетона с формой.

Формование сборных железобетонных изделий должно осуще­ствляться согласно «Правилам техники безопасности для строи­тельно-монтажных работ», утвержденным 26 февраля 1958 г. и введенным в действие с 1 августа 1958 г.

Особое внимание должно быть обращено на устранение вибра­ционных колебаний на рабочих местах, вызывающих у обслужи­вающего персонала «виброболезнь», и на точное выполнение пра­вил техники безопасности при съеме изделий из форм и штабели­ровании изделий на складе. При формовании изделий вибрацион­ным колебаниям подвергаются рабочие, обслуживающие вибро­площадки, машинисты бетонораздатчиков и в меньшей мере рабо­чие, уплотняющие бетонную смесь ручными вибраторами.

Так как амплитуда и частота колебаний виброплощадок, не­обходимые для уплотнения бетонной смеси, в десятки раз превы­шают значения, допустимые для безопасной работы, то категори­чески запрещается нахождение рабочих на виброплощадке во время ее работы. Если возникает необходимось дополнительного разравнивания смеси в формах во время работы виброптощадки и ширина виброплощадки затрудняет выполнение этой операции рабочими, находящимися рядом с площадкой, то необходимо пре­дусматривать откидные настилы или передвижные тележки, нахо­дясь на которых рабочие разравнивают смесь-

Если вибрации от виброплсщадки передается на пол в такой степени, что вызывает у рабочих сильно ощутимое, мешающее ра­боте воздействие, то необходимо ее снизить путем установки виб­роплощадки на более мягкие пружины или устройства на рабочих местах массивных плит (весом 120—150 кг на 1 пог. м их длины), опирающихся на гибкие пружинные или резиновые виброизоли­рующие опоры.

Виброизоляция рабочего места машиниста бетонораздатчика достигается установкой на сиденье бетонной или металлической плиты весом не менее 100—150 кг, опирающейся на податливые пружины. По возможности следует также уменьшить передачу ко­лебаний от вибратора, установленного на бункере бетонораздат-. чика, на станину последнего с помощью крепления бункера на виброизолирующих опорах.

Рукоятки ручных вибраторов должны быть снабжены аморти­заторами, устраняющими сильно ощутимые для рабочих колеба­ния. Запрещается становиться на площадки поверхностных вибра­торов и прижимать вибраторы руками к уплотняемой смеси. Все рабочие, связанные по своей деятельности с воздействием вибра­ции, допускаются к работе только после медицинского освидетель­ствования, повторяемого через каждые шесть месяцев.

Работая с виброплощадками, виброштампами и другими уст­ройствами, оборудованными вибраторами, необходимо тщательно контролировать затяжку болтов и контровку гаек, особенно на ко­леблющихся деталях.

При уплотнении бетонной смеси возникает опасность пораже­ния рабочих электрическим током, несмотря на то, что вибраторы работают при напряжении в 36 в. Для устранения этой опасности бетонщики должны работать в резиновых сапогах и рукавицах. Вибраторы перед началом работ должны быть тщательно прове­рены электромонтером и заземлены.

При установке подъемных петель в формуемое изделие они должны быть заведены в бетон не менее чем на 30 диаметров и иметь на концах крюки, причем в железобетонных конструкциях, особенно тонкостенных, оба крюка петли следует обязательно за­водить за рабочую арматуру. Подъемные петли должны изготов­ляться из мягкой стали и иметь запас прочности не ниже трех­кратного.

Перед зацеплением стропами за петли последние внимательно осматривают и в случае сомнения проверяют их надежность проб­ным подъемом элемента на высоту не более 0,2—0,3 м. Пробный — подъем обязателен при весе элемента, равном или приближаю­щемся к максимальной грузоподъемности крана.

Для устойчивого положения конструкции при подъеме и иск­лючения возможности ее опрокидывания центр тяжести конструк­ции должен находиться ниже точки закрепления строп. и между стропами. Строповку элементов нужно выполнять по предусмот­ренной проектом схеме и проверять пробным подъемом.

При укладке элемента в штабель он должен плотно, без раска­чивания, ложиться на подкладки, поэтому перед снятием с элемен­та строп следует проверить его устойчивость в штабеле.

Объемно-планировочные решения производственных зданий

Промышленные здания предназначаются для осуществления в них произ­водственного процесса с помощью соответствующих технологий и используе­мого в них оборудования. Основные требования, предъявляемые к промышлен­ным зданиям (перечислены в порядке убывания функциональной значимости):

— обеспечение промышленной и экономической безопасности производства;

— пригодность для размещения в них проектируемых технологий;

— инженерная обеспеченность здания;

— достаточная прочность и долговечность;

— возможность возведения здания индустриальными методами;

— экономичность проектных и строительно-монтажных работ;

— пригодность здания к реконструкции в случае реализации проекта по модернизации размещаемых в нем технологий;

— архитектурная выразительность и благоприятные решения интерьера.

Проектирование производственных зданий промышленных предприятий

ведется по СНиПам и нормам технологического проектирования (НТП).

По степени зависимости от технологического процесса производственные здания можно разделить на две группы. Первую группу составляют здания, объемно-планировочные решения которых полностью зависят от особенностей технологического процесса, характера и габаритов производственного обору­дования. Это мартеновские, прокатные и конверторные цеха металлургических заводов, коксохимические заводы, агломерационные фабрики, здания цемент­ного производства, горно-обогатительные, дробильно-сортировочные предпри­ятия, элеваторы и др. При возведении таких зданий используются специальные конструкции, а объемно-планировочные решения в каждом случае имеют ярко выраженный индивидуальный характер.

Вторую группу составляют здания, на объемно-планировочные решения ко­торых технологический процесс практически не оказывает влияния. В зданиях этой группы могут размещаться технологические процессы самых различных производств: станко — и машиностроения, легкой, пищевой, химической промыш­ленности и многих других. Возведение этих зданий может осуществляться инду­стриальными методами на основе унифицированных габаритных схем, типовых пролетов и секций. Унифицированная габаритная схема (УГС) — это схематиче­ское изображение типовых объемно-планировочных элементов зданий, унифици­рованных по геометрическим параметрам и нагрузкам. В зависимости от местопо­ложения в здании объемно-планировочные элементы могут быть угловыми, тор­цевыми, крайними, средними и примыкающими к деформационным швам.

Суть проектирования на основе УГС заключается в следующем: здание разбивается на типовые объемно-планировочные одно — или многоэтажные эле­менты (ОПЭ) с унифицированными геометрическими параметрами: пролетом (I), шагом колонн (Ш), высотой этажа (Н) и нагрузками. Из элементов путем их взаимосочетаний компонуют одно — и многоэтажные промышленные здания (рисунок 6).

Объемно-планировочные решения производственных зданий

а — УГС одноэтажного однопролетного промышленного здания без мостового крана; б — УГС одноэтажного однопролетного промышленного здания с мостовым краном; в — УГС трехэтажного двухпролетного промышленного здания; г — типовые объемно-планировочные элементы промышленных зданий

Рисунок 6 — Унифицированные габаритные схемы (УГС) одно — и многоэтажных промышленных зданий

Для целого ряда отраслей промышленности проектирование ведется пу­тем компоновки крупноразмерных объемных фрагментов зданий — унифициро­ванных типовых пролетов и секций с типовыми параметрами, нагрузками и конструкциями. Унифицированный типовой пролет (УТП) — фрагмент здания шириной в один пролет и длиной, равной длине температурного блока, состав­ляющей 60 или 120 м для железобетонного каркаса и 72 или 144 м для металли­ческого каркаса (рисунок 7). Унифицированные типовые пролеты отличаются величиной нагрузок, типами конструкций, местоположением в здании (средние и крайние, левые и правые) и используются в компоновке промышленных зда­ний с технологическими потоками одного направления.

Объемно-планировочные решения производственных зданий

1 — Ширина пролета (L);

2 — Длина пролета (l);

3 — Температурный шов (ТШ)

Рисунок 7 — Унифицированные типовые пролеты (УТП) и секции (УТС)

промышленных зданий

Унифицированная типовая секция (УТС) — фрагмент здания, состоящий из нескольких унифицированных типовых пролетов одной высоты. Обычно УТС представляет собой температурный блок здания. УТС используется в ком­поновке промышленных зданий с технологическими потоками, осуществляе­мыми в разных направлениях.

Метод проектирования на основе УТП и УТС прост. На макете рабочего чертежа, скомпонованного из УТП или УТС применительно к конкретным условиям производства, наносят стены и перегородки, размещают проезды для внутрицехового транспорта, проходы и т. д. Данный метод создает оптимальные условия для блокирования производственных, вспомогательных, складских и других помещений в объеме здания, позволяет реализовать преимущества уни­фикации при проектировании зданий и наилучшим образом учесть реальные условия строительства [29].

Объемно-планировочные решения одно — и многоэтажных промышленных зданий имеют принципиальные различия. В одноэтажных зданиях размещается 75-80% промышленных производств. Это сталелитейные, прокатные, кузнеч­ные и другие цеха, выпускающие продукцию значительной массы, оборудован­ные мощными подъемно-транспортными средствами. Объемно-планировочные решения одноэтажных промышленных задний определяются характером за­стройки и расположением опор в здании. Существует два варианта застройки: раздельная и сплошная (рисунок 8).

Объемно-планировочные решения производственных зданий

а — раздельная застройка; б — сплошная застройка

Рисунок 8 — Варианты застройки территории промышленного предприятия

Раздельная застройка (рисунок 8 а) осуществляется с помощью отдельно стоящих протяженных и относительно узких корпусов павильонного типа, в которых легко осуществляется естественное освещение и проветривание. Од­нако размещение цехов в отдельно стоящих зданиях значительно увеличивает площадь территории предприятия, протяженность пешеходных и транспортных сетей, объем работ по благоустройству территории. Кроме того, планировочное решение павильонного здания не отличается гибкостью, т. е. не обеспечивает возможность изменять направление технологического потока, осуществлять перестановку производственного оборудования с целью приспособить здание к новым условиям технологии.

В связи с отмеченными недостатками раздельная застройка используется в основном при строительстве объектов металлургической и химической про­мышленности, где по условиям технологии обязательным является сквозное проветривание цехов, либо при возведении складских объектов, не требующих частого изменения технологии.

Сплошная застройка производственной территории осуществляется с по­мощью сблокированных зданий — многопролетных корпусов большой площади (рисунок 8 б). В таких зданиях объединяются (блокируются) цехи основного производства, вспомогательные и энергетические, транспортно-складские, бы­товые и административные помещения.

Блокирование обеспечивает значительное увеличение внутреннего про­странства здания, позволяет организовать многовариантную расстановку тех­нологического оборудования, более компактно и экономично решить генераль­ный план предприятия. В сблокированных зданиях легко осуществить зониро­вание производственных операций. В зоны объединяются производства, име­ющие одинаковую технологию либо характеризующиеся выделением одинако­вых вредностей или наиболее пожароопасные [18; 26]. Зонирование способ­ствует экономичному использованию капитальных затрат и эффективной экс­плуатации производства.

Одноэтажные промышленные здания проектируют пролетными, ячейко­выми, зальными.

В зданиях пролетного типа величина пролета превышает величину шага ко­лонн. Унифицированные размеры пролетов — 18, 24, 30 м и более, шаг колони — 6 и 12 м. Пролетные здания предназначаются для технологических процессов, направленных вдоль пролета.

Здания ячейкового типа имеют квадратную или близкую к ней пря­моугольную сетку колонн, что позволяет организовать технологический про­цесс вдоль пролет и в перпендикулярном к нему направлении.

Ячейковые здания с укрупненной сеткой колонн (18×18, 24×24, 30×30 м и более) получили название «гибких», или универсальных. Здания могут не иметь привязки к конкретному виду производства и проектироваться для многих от­раслей промышленности. Гибкость планировочного решения, обеспечиваемая редко расставленными колоннами, создает оптимальные условия для многовари­антной расстановки производственного оборудования. Подобный тип зданий по­лучил наибольшее распространение в машиностроении, где замена технологиче­ского оборудования осуществляется через каждые 9-10 лет, а иногда и чаще, а также там, где по условиям технологии требуются значительные производствен­ные площади без внутренних опор (машинные залы ТЭЦ, ангары и др.).

Здания зального типа имеют пролеты 36 м и более.

Многоэтажные промышленные здания проектируют, как правило, кар­касными. По объемно-планировочному решению они бывают унифици­рованного типа, с увеличенным верхним этажом и с межферменными этажами.

Здания унифицированного типа высотой от двух до десяти этажей имеют сетку колонн 6×6 м или 6×9 м и высоту этажа 3,6; 4,8 и 6,0 м.

В зданиях с увеличенным верхним этажом параметры, конструкции и подъемно-транспортные средства верхнего этажа отличаются от нижележащих этажей. Пролет верхнего этажа шириной от 12 до 24 м перекрывают с помощью балок или ферм, а высоту этажа принимают равной 7,2; 8,4 и 10,6 м. В пределах этажа вдоль пролета может быть организовано движение мостового крана гру­зоподъемностью 10-20 т. Остальные этажи здания проектируют с унифициро­ванными параметрами и нагрузками на перекрытия.

Здания с межферменными этажами проектируют пролетом 12 и 18 м, пе­рекрывают фермами высотой от 1,2 до 3 м и организуют в межферменном про­странстве дополнительные этажи, в которых размещают конструкторские бюро, технические, административно-бытовые и другие помещения.

Вертикальная связь между этажами во всех типах многоэтажных зданий осуществляется с помощью лестниц и лифтов. Для перемещения грузов в пре­делах этажа используют напольный транспорт, подвесные конвейеры и кран­балки.

Особенности объемно-планировочных решений сельскохозяйственных зданий определяются характером размещаемых в них производственно­технологических процессов, отличающихся от процессов, происходящих в гражданских и промышленных зданиях, по составу технологических операций, номенклатуре и размерам помещений, типам и габаритам оборудования, коли­честву и составу участников. Сельскохозяйственные здания проектируют одно — и многоэтажными.

Одноэтажные сельскохозяйственные здания в зависимости от их ширины могут быть узкогабаритными и широкогабаритными.

Узкогабаритные здания шириной до 18 м — исторически сложившийся в сельской местности тип здания. В них содержат животных и птиц, устраивают теплицы. Здания проектируют, как правило, однопролетными.

Широкогабаритные здания шириной от 18 до 48 м строят на крупных производственных комплексах. Такие здания обычно имеют три или четыре пролета. Трехпролетные здания шириной 36 м характерны для жи-

вотноводческих комплексов откормочного направления, а четырехпролетные шириной 36 м и более — для предприятий по хранению и переработке сельско­хозяйственной продукции. Застройка производственной территории одноэтаж­ными отдельно стоящими узко — или широкогабаритными зданиями носит название павильонной. Планировочное решение основного в здании помещения (производственного), зависит от числа пролетов. Наиболее удобную для раз­мещения производственного процесса планировку получают в многопролетных зданиях. Чем шире пролеты, тем большей гибкостью обладает планировочное решение, обеспечивая широкие возможности при изменении условий содержа­ния животных, птицы и при перепланировке помещений.

Оптимальная свобода планировочного решения достигается в моноблоках — одноэтажных многопролетных зданиях блокированного типа.

В объемно-планировочных решениях сельскохозяйственных зданий, воз­водимых по типовым проектам, в единую композицию объединяют основные производственные помещения, подсобные помещения, предназначенные для размещения оборудования (электрощитовая, тепловой узел, вентиляционная камера, инвентарная, технический коридор и др.) и вспомогательные помеще­ния, предназначенные для обслуживающего персонала. К вспомогательным помещениям относятся также санитарные узлы, коридоры и тамбуры. Подсоб­ные и вспомогательные помещения размещают или в торцах зданий, или вдоль его поперечной центральной оси. В основе объемно-планировочных решений лежат уже известные планировочные схемы.

При зальной схеме производственное помещение занимает почти всю площадь здания, не имеет внутри перегородок, кроме тех, которые отделяют подсобно-вспомогательные помещения. Зальная схема экономична, но не ис­ключает контакт больных животных (птиц) со здоровыми, ограничивает воз­можности дезинфекции помещений.

Секционная схема обеспечивает размещение в здании двух или несколь­ких одинаковых производственных секций, вход в которые организован через подсобное помещение. Эта схема удобна для хранилищ, в которых производят первичную обработку овощей и фруктов.

Коридорно-секционная схема отличается от секционной тем, что вход в секции предусматривается из коридора. В здании может быть один продольный коридор или несколько коридоров, в том числе и поперечных. Последнее ха­рактерно для моноблоков, в которых группы одинаковых секций располагаются

между поперечными коридорами. Схема менее экономична, чем зальная, так

114

как предполагает возведение большого числа стен и перегородок, однако удоб­нее зальной для организации технологического процесса в животноводческих зданиях, хранилищах, в которых необходимы изоляция процесса и периодиче­ская дезинфекция помещений.

При анфиладной схеме предусматривается последовательный переход из одного производственного помещения в другое. Смешанная (комбинированная) схема применяется, если в здании размещают несколько различных по площади и конфигурации производственных помещений.

ВИБРОШТАМПОВАНИЕ

Основным рабочим органом при виброштамповании является профилирующий виброштампующий сердечник-виброштамп, при опускании которого на бетонную смесь она становится более подвижной, принимает очертания изделия, ограниченного снизу и с боков формой, а сверху — сердечником. Иногда при вибрирова­нии используют прижимную раму, которая может быть оснащена вибратором. Наиболее целесообразно применение виброштампо­вания при массовом изготовлении изделий сложной формы (на­пример, лестничных маршей, ребристых плит и т. п.), изготовля­емых из жестких или малоподвижных смесей. При формовании поверхность изделия со сложным рельефом находится сверху.

При виброштамповании изделие изготовляют в следующей последовательности: 1) на поддон устанавливают бортовую ос­настку, укладывают арматуру и засыпают бетонную смесь; 2) опу­скают в смесь виброштампующий сердечник, распределяют и уп­лотняют смесь, принимающую форму изделия; 3) выключают виб­раторы и поднимают виброштамп и бортовую оснастку, оставляя изделие на поддоне. В дальнейшем обычно поддон с изделием устанавливают в пропарочную камеру для ускоренного твердения бетона. При виброштамповании благодаря непосредственной пе­редаче вибрации бетонной смеси наиболее полно используется энергия вибрирования для профилирования и уплотнения смеси в изделии и возможно применение особо жестких смесей с В/Ц — = 0.3—0,35.

Для формования виброштампами изделий сложной конфигура­ции (лестничные марши, ребристые плиты « т. п.) удобоукладыва — емость бетонной смеси по техническому вискозиметру должна быть около 100 сек., а при простых по форме изделиях (бор­дюрный камень, дорожные плиты и т. п.) возможно применять особо жесткие смеси, имеющие удобоукладываемость до 400 сек. При применении виброштампов толщина бетонируемого изделия ограничивается 300 лшпри удобоукладываемости смеси до 100 сек. и 200 мм при более жестких смесях. Если толщина бетонируемого изделия более 300 мм или необходимо готовить изделие сложной формы из смеси с удобоукладываемостью более 100 сек., то реко­мендуется применять двустороннее вибрирование, т. е. уплотнять смесь в форме на виброплощадке и при помощи виброштампа.

При двустороннем вибрировании виброплощадка должна иметь частоту колебаний около 3 000 кол/мин и амплитуду не ме­нее 0,5—0,7 мм. После надежного закрепления формы на вибро­площадке сначала в течение 60—130 сек. ведется уплотнение сме­си только на виброплошадке, а затем на 20—60 сек. включается в работу виброштамп.

Применение виброштампования, позволяющего применять же­сткие бетонные смеси и осуществлять немедленную распалубку, снижает трудоемкость изготовления и расход металла на формы, повышает качество изделий и уменьшает их стоимость.

Виброштампы для изделий объемами до 0,5 м3 оборудуются стандартными вибраторами (И-117, С-357, И-87), а для изделий большего объема на виброштампах устанавливают приводные ви­браторы с эксцентриками на вибровалу, соединенном с электро­двигателем гибкой передачей (желательно клиноременной).

Приводные вибраторы должны иметь регулируемый по вели­чине кинетический момент с минимальным значением около 40 кгсм и частоту колебаний 1500—3 000 кол/мин; оптимальное значение кинетического момента следует определять опытным пу­тем. Величина возмущающей силы вибратора виброштампа при­нимается из расчета 1500—2 000 кг на 1 м2 площади изделия.

При формовании изделий из жестких и особо жестких смесей вес сердечника виброштампа должен обеспечивать пригрузку в пределах от 30 до 90 г/см2, для чего на нем закрепляют при не­обходимости дополнительный груз. Рама, на которой крепятся вибраторы, должна быть достаточно жесткой, в противном случае не будет обеспечена одинаковая амплитуда колебаний различных точек сердечника. При формовании изделий рама виброштампа опирается на борта формы или на специальные ограничители, установленные на бортах. Для обеспечения лучшей вибрации сме­си в местах, на которые опирается рама виброштампа, уклады­ваются резиновые прокладки толщиной 10—12 мм.

Точная установка сердечника виброштампа при опускании его на бетонную смесь достигается при помощи специальных фикса­торов, которыми оборудуется бортовая оснастка и сердечник ви­броштампа. Фиксаторы выполняются в виде стальных стержней на форме, которым соответствуют отверстия в сердечнике, или в виде конусообразного вертикального паза на форме и соответст­вующего гребня или выступа на сердечнике.

В некоторых случаях, главным образом при массовом изготов­лении одинаковых изделий, для облегчения подъема сердечника нижние горизонтальные поверхности его обшивают металлической сеткой, покрытой прочной хлопчатобумажной тканью, или снаб­жают резиновой покрышкой с клапанами, через которые по окон­чании вибрации пускают воздух, заполняющий пространство меж­ду резиной и нижней поверхностью вибросердечника.

Методом виброштампования изготовляют в один прием ребри­стые изделия «ребрами вверх» с немедленной распалубкой изде­лия. В этом случае оборудование состоит из формы-опалубки, свя­зей жесткости и вибросердечника с коробами-дозаторами. Послед­ние заполняют бетонной смесью, которая через щель, расположен­ную внизу по периметру коробов, поступает в опалубку. Для об­легчения съема вибросердечников их нижние поверхности обору­дуют дренирующей полостью или вакуумполостями.

При принятой конструкции виброштампа формование плит ве­дется в следующем порядке: 1) укладка арматуры; 2) опускание виброштампа; 3) заполнение коробов-дозаторов смесью (в объ­еме, равном — объему бетона плиты в уплотненном состоянии);

4) включение вибраторов, распределение и уплотнение смеси;

5) подъем виброштампа с оставлением отформованных плит н^

поддоне. J

При формовании небольшого количества изделий (до 30—< 40 шт.) допускается устройство деревянных виброштампов. Сер — дечник последних выполняется в виде рамы из продольных и по­перечных брусьев сечением 120X200 и 80X200 мм, соединенных болтами (см. рис. 127). На продольные брусья устанавливаются; стандартные вибраторы; брусья обшиваются досками, образующи­ми корпус сердечника. Для лучшей сохранности и уменьшения сцепления виброштампа с бетоном, поверхности сердечника оби­ваются кроэелькой сталью.

На рис. 128 показан металлический виброштамп для изготов­ления сплошного лестничного марша объемом 0,55 м? в форме, состоящей из поддона, и прикрепленных к нему на петлях откид­ных бортов. Каркас сердечника виброштампа состоит из швеллер ров № 18 со срезанной нижней полкой, к которым приварена гребенка из 3-мм листовой стали, усиленной уголками жесткости; Гребенка образует ступени марша и в ней оставлены отверстия* через которые выходит излишняя смесь или подается недостающее ее количество. В качестве фиксаторов служат парные уголки* установленные на верхней полке швеллера откидного борта, меж^ ду которыми входят парные швеллера сердечника.

Общий вес сердечника с четырьмя вибромоторами от вибрато — ра И-7 около 500 кг, а поддона, с бортами — 1Д00 кг. При формой вании сердечник загружается дополнительным грузом.

Для формования крупноразмерных ребристых плит с ребрамц по периметру и по продольной оси в тресте Магнитострой с успе­хом в течение длительного времени использовался металлический виброштамп (рис. 129) с двумя приводными вибраторами. Вибра­тор в виде находящегося в подшипниках вала с двумя дебаланса­ми через упругую муфту соединяется с валом электромотора. Об-

Щий вес сердечника виброштампа равен 1 230 кг и создает допол­нительную пригрузку в размере около ЗО г/см2. Весь дикл формо — вания плиты продолжается 4 мин., после чего она в форме подает­ся в камеру пропаривания. *

Для формования изделий из жестких бетонных смесей НИИ по строительству Минстроя СССР разработал виброштамп

Рис. 129. Сердечник виброштампа для формования круп­норазмерных ребристых плит

а — вид сбоку: б — план; / — электромотор; 2 — вал вибратора;

J — дебалансы; 4 — подшипник; 5 — упругая муфта

(рис — 130 и табл. 39), для которого в качестве вибратора использо — вано оборудование от серийно выпускаемой вибромельницы М-200, К раме вибратора могут быть прикреплены различные сердечники длиной от 1,5 до 4 м и шириной от 0,2 до 1,5 м при общей площа­ди до 3,5—4 м2.

Перед началом работы виброштампа следует внимательно про-1 верить надежность крепления болтов и гаек и подключение элек­тродвигателей к сети. Если амплитуда колебаний превосходит максимально допустимую, то ее уменьшают установкой дебалансов или увеличением веса пригрузки. Виброштамп следует поднимать осторожно, без рывков и строго по вертикали.

При бетонной смеси с осадкой конуса в 20—30 мм в изделиях, имеющих ребра со скошенными гранями, или при смесях с нуле­вой осадкой конуса в изделиях с вертикальными ребрами вибро-

1 аблида 39

Техническая характеристика виброштампов конструкции НИИ по строительству

Минстроя

Наименование

При вибраторе с 1 500 кол/мин

При вибраторе с 3000 кол/мин

Габариты рамы вибратора в мм. Амплитуда колебаний, максималь­

1 955X540

I 955X540

ная в мм… • • . . , .

Электродвигатель:

2,0

1,5

мощность в кет…..

7или10

20

число оборотов в мин…………….

Кинетический момент вибратора

1 440 или 1 450

2 920

в кгсм … …..

140-175

65

Вес вибратора в кг……………………..

Общий вес виброштампа без сер­

182

200

дечника в кг……..

Удельное давление сердечника в

450-550

г/см2 ………………………… я . . . .

30-90

Режим работы . „ . . . • „ •

Периодический

штамп поднимают немедленно после окончания формования. При более подвижной смеси виброштамп во избежание оплывания ре­бер оставляют на некоторое время, определяемое опытным путем, в отформованном изделии и только затем его поднимают.

Анкерные узлы

Анкерные узлы служат для восприятия усилий в канатах и передачи их на опорные конструкции В предварительно-напряженных вантовых покрытиях эти узлы используют также для предварительного натяжения канатов; при этом в узлах возникают значительные местные напряжения Конструкция узлов анкеровки должна обеспечивать свободное перемещение канатов при изменении нагрузки

Крепление канатов к стальным конструкциям в принципе выражается так же, как и анкеровка в бетоне

U-

Рис. 8.2 Домкратный узел для натяжения ванты из двух канатов висячей оболочки

1,3- подвижные и стационарные траверсы, 2 — домкраты, 4 — гильзоклкновый анкер; 5 — плита, 6 — закладная деталь; 7 — тяги; 8 — болты; 9 — штуцеры

Применение бетоне с противоморозными добевкеми

Бетон с противоморозными добавками обладает способностью твердеть при отрицательных температурах. В качестве противо — морозных добавок применяют хлорид натрия в сочетании с хлори­дом кальция (ХН+ХК); нитрит натрия (НН); поташ (П); соеди­нение нитрата кальция с мочевиной (НКМ); нитрит натрия в со­четании с хлоридом кальция (НН+ХК); нитрит-нитрат-хлорид кальция (ННХК); нитрат кальция в сочетании с мочевиной (НК+ +М), нитрит-нитрат-хлорид кальция в сочетании с мочевиной (ННХК+М).

Величина нарастания прочности бетона на портландцементах с противоморозными добавками показана в табл. 21.

Оптимальное количество добавок в зависимости от расчетной температуры твердения бетона, состояния материалов (холодные, оттаянные или подогретые), величины водоцементного отношения, типа цемента и его минералогического состава находится в пре­делах З…16% от массы цемента и устанавливается в строитель­ной лаборатории.

Таблица 21. Нарастание прочности бетона на портландцементах с противоморозными добавками

Добавки и их сочетания

Расчетная темпе­ратура твердения бетона, °С

Прочность, % от | при твердении | бетона на морозе | за период, суг

Добавки н их сочетания

Расчетная тем­пература тверде­ния бетона, бС

Прочность, % от Rtb* при твердении бетона на морозе за период, сут

7

14

28

90

7

14

28

90

нн

—5

30

50

70

90

-15

15

25

35

60

—10

20

35

55

70

—20

10

20

30

50

—15

10

25

35

50

ннхк;

—5

40

60

80

100

хн+хк

—5

35

65

80

100

нн+хк;

—10

25

40

50

80

—10

25

35

45

70

ннхк+м

—15

20

35

45

70

—15

15

25

35

50

—20

15

30

40

60

—20

10

15

20

40

—25

10

15

25

40

НКМ;

—5

30

50

70

90

п

—5

50

65

75

100

нк+м

—10

20

35

50

70

—10

30

50

70

90

—15

25

40

65

80

—20

25

40

55

70

—25

20

30

50

60

Примечание. При использовании быстротвердеющих портландцементов приведенные величины умножают на коэффициент 1,2, а шлаковых и пуццолановых портландцементов—на0,8

При выборе вида противоморозной добавки необходимо учиты­вать область применения бетонов с химическими добавками, так как для различных конструкций в зависимости от типа армирова­ния и агрессивности среды, в которой будут находиться конструк­ции при эксплуатации, существуют ограничения по применению того или иного вида добавок (СНиП III-15—76), а для предвари­тельно напряженных конструкций, армированных термически уп­рочненной сталью, и для железобетонных конструкций электри­фицированного транспорта и промышленных предприятий, по­требляющих постоянный электрический ток, не допускается применение противоморозных добавок.

Бетонную смесь с противоморозными добавками можно транс­портировать в неутепленной таре. Предельная продолжительность транспортирования и допускаемый срок укладки бетонной смеси зависят от ее подвижности; их устанавливают в строительной ла­боратории.

Укладываемая в конструкцию бетонная смесь не должна содер­жать частиц льда, снега, смерзшихся комьев материала. Бетон­ную смесь с противоморозными добавками укладывают в конст­рукции и уплотняют, соблюдая общие правила укладки. Поверх­ность бетона, не защищенную опалубкой, укрывают во избежание вымораживания влаги. Бетон выдерживают под укрытием до по­лучения распалубочной прочности.

Если после укладки бетона температура его стала ниже расчет­ной, принятой при установлении концентрации водных растворов противоморозных добавок, уложенный бетон утепляют сухими опилками (слоем 10…15 см), сухим песком (слоем 30…40 см), сне­гом (слоем 40…60 см) или сочетают выдерживание бетона по спо­собу термоса с искусственным обогревом до момента достижения бетоном необходимой прочности.

Штукатурные работы

Штукатурка (от итал. stuccatura) — слой затвердевшего раствора, нанесенного в пластичном состоянии на поверхность конструктивных элементов зданий (со­оружений) для выравнивания их поверхностей, придания им защитных и деко­ративных свойств. Штукатурные работы выполняют мокрым способом с приме­нением цементных, цементно-известковых, известковых, известково-гипсовых и др. растворов, наносимых на отделываемые поверхности с последующей обработкой поверхностного слоя. Сухой штукатуркой называют готовые гипсовые, гипсоволокнистые, древесно-волокнистые или др. листы заводского производ­ства. Отделка такими листами относится к облицовочным работам.

Штукатурки классифицируют:

♦ по назначению — обычная (защита конструкций и помещений от вредных атмосферных воздействий и сырости, облегчение ухода), декоративная (при­дание художественных свойств обработанным поверхностям) и специальная (тепло-, звуко- или гидроизоляция, защита от вредных излучений и др.);

♦ по видам вяжущих — цементная, цементно-известковая, известковая, из­вестково-гипсовая, известково-глиняная. и др.;

♦ по качеству исполнения — простая (для вспомогательных и складских по­мещений), улучшенная (для жилых помещений, торговых залов, учебных заведений) и высококачественная (для театров, административных и дру­гих уникальных зданий, а также фасадов).

Работы по устройству штукатурки называются штукатурными работами, они, как правило, механизированы. Штукатурный раствор наносят на поверхность последовательно отдельными слоями.

Первый слой — обрызг — предназначен для сцепления штукатурки с отделы­ваемой поверхностью, для него используют растворы с большей подвижностью.

Второй (промежуточный) слой — грунт — служит для выравнивания поверх­ности и получения требуемой толщины штукатурки. Грунт выполняют более гу­стым раствором, его можно наносить в несколько слоев толщиной около 7 мм каждый, число их зависит от требуемой толщины штукатурки.

Последний, верхний (отделочный, накрывочный) слой — накрывку — нано­сят жидким раствором на мелком песке для образования гладкого и уплотненно­го отделочного слоя толщиной не более 2 мм. Иногда для накрывки применяют составы типа паст (беспесчаная накрывка), что позволяет совместить процессы оштукатуривания и шпатлевания для подготовки поверхности штукатурки не­посредственно под окраску.

Каждый слой грунта тщательно разравнивают, а накрывочный слой при глад­кой фактуре штукатурки заглаживают. Средняя суммарная толщина всех слоев простой штукатурки — 18 мм, улучшенной — 20 мм, высококачественной — 25 мм.

В зависимости от требуемого качества различают простую, улучшенную и высококачественную штукатурки, которые включают следующие слои:

♦ простая штукатурка — обрызгй один слой грунта с последующим затира­нием («под сокол»);

♦ улучшенная штукатурка — обрызг, один слой грунта и накрывочный слой с последующим его разравниванием и затиранием («под правило»);

♦ высококачественная штукатурка — обрызг, слой грунта, один-два накры — вочных слоя с последующим разравниванием и затиранием или декора­тивный слой с последующим его офактуриванием («по маякам»).

Производство работ. К штукатурным работам приступают только тогда, когда созданы условия, исключающие повреждение штукатурки в результате после­дующих строительных работ, осадки здания, атмосферных воздействий. До на­чала этих работ внутри здания должны быть окончены все строительные работы (кроме устройства полов), санитарно-технические работы (без установки при­боров) и скрытая электропроводка.

Элементы зданий и сооружений перед оштукатуриванием принимаются по акту комиссией с участием представителей организаций, выполнявших предше­ствующие штукатурным работы, и исполнителя.

Прочное сцепление штукатурки с отделываемой поверхностью при мокром способе работ достигается ее соответствующей подготовкой:

♦ гладкие бетонные поверхности насекают, для создания шероховатых поверхностей конструкций их обрабатывают пескоструйным аппаратом;

♦ кладка кирпичных стен должна быть выполнена впустошовку;

♦ деревянные конструкции обивают дранью;

♦ при необходимости повышенной толщины штукатурного слоя применяют металлическую сетку и т. д.

Подготовка поверхностей под штукатурку включает их тщательную очистку от пыли, грязи, жировых и битумных пятен, а также от выступивших солей. Ра­боты выполняются электро — или пневмомолотками, металлическими скребка­ми, стальными щетками.

Поверхности, подлежащие оштукатуриванию, проверяются провешиванием в вертикальной и горизонтальной плоскостях с установкой инвентарных съем­ных марок, а при высококачественной штукатурке — маяков из быстротвердею — шего свежеприготовленного гипсового раствора. Таким раствором могут быть «приморожены» специальные направляющие для выравнивания поверхностей, в основном — потолков, или защитные уголки для внешних углов стен или отко­сов. Операция выполняется вручную с использованием шнуров, отвесов, правил и уровней. Толщина марок и маяков должна соответствовать толщине намета без накрывки.

Качество штукатурки (простая, улучшенная или высококачественная), раство­ры для штукатурных работ и их марки назначаются проектом. Каменные и бе­тонные поверхности в помещениях оштукатуривают сложными или известко­выми растворами, а деревянные и гипсовые — известково-гипсовыми. При ош­тукатуривании помещений, влажность воздуха в которых во время эксплуатации будет более 60% (ванных комнат, прачечных, бань, цехов с мокрыми технологи­ческими процессами и т. п.), для первого слоя штукатурки (обрызга) применя­ются цементные и цементно-известковые растворы, приготовленные на порт — ландцементах.

Штукатурные растворы приготавливают централизованно или на при­объектной установке в соответствии с проектом производства работ. Во втором случае рационально максимально использовать сухие растворные смеси, достав­ляемые в бумажных мешках или бункерах-контейнерах.

Для нанесения штукатурного раствора применяют растворонасосы, которые под давлением подают его на стену через бескомпрессорные (преимущественно прямоточные) и пневматические форсунки. Подвижность процеженных штука­турных растворов в момент их механизированного нанесения на оштукатурива­емые поверхности должна соответствовать следующим глубинам погружения стандартного конуса: для слоев обрызга — 9—14 см, грунта — 7—8, накрывочного слоя, содержащего гипс, — 9—12, не содержащего гипс — 7—8 см. Вручную (с помощью специального ковша, совка-лопаты или мастерка) раствор наносят только в небольших помещениях путем шлепкового набрасывания отрывисты­ми резкими движениями.

Иля придания растворам самых различных свойств используют специальные добавки — пластификаторы. Пластифицирующих добавок много.

Добавки, замедляющие схватывание, приходится вводить в цементные раство­ры очень редко. Замедлители необходимы при работе с гипсовым раствором. Чистый гипс уже через 4 мин начинает схватываться, а окончание схватывания наступает не позднее 30 мин. К гипсу добавляют известь. Известково-гипсовый раствор имеет значительно большие сроки схватывания. Если этого недостаточ­но, добавляют животный клей, буру или порошковые замедлители. При введе­нии в раствор клея нужно добавить и каустическую соду (1,5% массы клея). Если этого не сделать, клей может загнить.

Добавки, ускоряющие схватывание сложных и цементных растворов, приме­няют, если раствор надо сделать быстросхватывающимся, а также для повыше­ния прочности в ранние сроки твердения. Необходимы они и при производстве работ в зимнее время. Ускорителями являются хлористый кальций, хлористый натрий, соляная кислота, молотая негашеная известь, углекислый калий — по­таш. Это, как правило, растворимые в воде порошки. При этом надо учитывать, что хлористые добавки дают высолы на поверхности штукатурки и, кроме того, их нельзя применять на внутренних работах из-за опасности отравления людей.

Разравнивание грунта выполняет вручную с использованием штукатурного сокола, полутерка или правила в зависимости от требуемого качества штукатурки.

Бригада штукатуров должца быть оснащена необходимым инструментом, инвентарем, приспособлениями, обеспечена материалами. При механизирован­ном способе производства работ растворы подаются по трубопроводам и нано­сятся с помощью растворонасосов; для окончательного заглаживания поверхно­сти штукатурки используют затирочные устройства с электрическим или пнев­матическим приводом. Для комплексной механизации штукатурных работ (переработки, транспортирования и нанесений растворов) широко применяют штукатурные станции, располагаемые около отделываемого объекта, или стаци­онарные растворные узлы, монтируемые в подвальном или цокольном этаже от­делываемого многоэтажного здания.

Штукатурные станции (рис. 13.1) конструктивно выполняют в виде закрыто­го утепленного кузова (фургона), установленного на двухосном прицепе либо на металлических направляющих (санях). Штукатурные станции комплектуется средствами механизации в зависимости от функций, назначения — для приготов­ления и транспортирования штукатурного раствора или для приема и транспор­тирования товарного раствора.

Штукатурные работы

Рис. 13.1. Штукатурный комплекс: 1 — штукатурная станция; 2 — растворовод;

3 — поэтажный штукатурный агрегат; 4 — затирочная машина

Штукатурные станции первого типа состоят из двухосного прицепа, на плат­форме которого смонтированы: растворосмеситель со скиповым подъемником, промежуточный бункер, вибросито, растворонасосы производительностью 2 и 1 м3/ч, компрессор, два процеживающих сита, два рабочих бункера, металличес­кий каркас. Разновидностью данного типа является штукатурная станция, у ко­торой раствор, доставленный автосамосвалом, загружается в приемный бункер и подается ковшами, закрепленными на элеваторном колесе, через приемный лоток на вибросито и далее растворонасосом — к рабочему месту штукатуров. В последнее время штукатурные станции комплектуются вместо поршневого ра — створонасоса пневмонагнетателем, что позволяет транспортировать более жест­кие растворы.

Производительность штукатурной станции — от 2 до 4—6 м3/ч; дальность по­дачи по вертикали — 40 и по горизонтали 200 м; частота вращения элеваторного колеса — 12 мин’1; максимальная скорость передвижения — 30 км/ч; установ­ленная мощность — 25—30 кВт. При транспортировании с объекта на объект необходимые инструменты и приспособления размещают в станции.

Обработка лицевых слоев. Нанесение накрывочного слоя осуществляют с по­мощью растворонасоса через форсунку или вручную методом намазывания с использованием полутерков. Затирку накрывочного слоя выполняют затироч­ными машинками пневматического или электрического действия, либо вручную с помощью терок.

Оштукатуривание откосов, лузг, усенков, поясков и карнизов производят до начала нанесения раствора на поверхности стен и потолков. Работы выполняют вручную с помощью специальных приспособлений. Перед оштукатуриванием откосов зажимами (рейкодержателями) укрепляют рейки-правила, которыми обеспечиваются вертикальность откоса и заданный «угол рассвета» (уклон внутрь оконного или дверного откоса). Они являются маяками при нанесении раствора и его разравнивании. Для получения ровных внутренних углов (лузг) и наруж­ных (усенков) устанавливают направляющие для соответствующих угловых шаб­лонов. Такие же направляющие нужны при устройстве поясков и карнизов. Их создают путем вытягивания, срезая излишки раствора при движении шаблонов, профиль которых определяет профиль карниза или пояска.

Механизация оштукатуривания откосов возможна при применении литьевой технологии, которая позволяет формировать откосы при заливке раствора за ус­тановленную в проеме переставную опалубку. t’ —

Уход за штукатуркой. Свежевыполненная штукатурка до затвердения должна предохраняться отударов и сотрясений, намокания, замерзания и пересушивания.

При необходимости производят искусственную сушку штукатурки, рав­номерно подавая в оштукатуренные помещения нагретый наружный воздух. При этом должен обеспечиваться не менее чем трехкратный обмен воздуха помеще­ния в течение 1 ч. Отдельные труднопросушиваемые места (углы, ниши и т. п.) подсушиваются дополнительными средствами (например, электронагреватель­ными приборами с экраном). Во избежание растрескивания и снижения проч­ности не допускаются сильный нагрев штукатурки (свыше 23°С) и интенсивное сквозное проветривание помещения.

Организация труда на штукатурных работах. Штукатурные работы, как правило, выполняют бригады, рабочие которых объединены в звенья, специализиру­ющиеся по операциям. Состав и порядок выполнения работ определяются ви — , дом конструктивных элементов и характером обрабатываемых поверхностей. Специализированные звенья объединяют рабочих одной профессии, но различ­ной квалификации. Более сложные операции выполняют рабочие высоких раз­рядов, менее сложные — рабочие низкой квалификации. Метод ведения штука­турных работ специализированными звеньями последовательно по операциям называется поточно-расчлененным (раздельным).

Работу в звеньях организуют так, чтобы обеспечить полную сменную и часо­вую загрузку механизма, с помощью которого раствор наносится на поверхность.

Здание разбивают на захватки по вертикали (этажи, ярусы) или горизонтали (секции, делянки) в зависимости от направления движения работ. Размеры зах­ваток и делянок определяются сменной выработкой звена. Для связи рабочих, наносящих раствор на верхних ярусах, с рабочими, обслуживающими механиз­мы внизу, оборудуют световую или звуковую сигнализацию.

Количество рабочих или звеньев, выполняющих отдельные операции, под­бирают с таким расчетом, чтобы время на эти операции было примерно равно времени для твердения ранее нанесенных слоев (с учетом технологических пе­рерывов).

Для максимального использования механизмов работы могут осуществляться несколькими потоками. Например, в первом потоке подготавливают поверх­ность, наносят и выравнивают обрызг и грунт, предварительно обрабатывают лузги, усенки, откосы и убирают помещение. Во время технологического пере­рыва в помещениях выполняют санитарно-технические, электромонтажные, плотничные или другие работы. Во втором потоке на высохшие огрунтованные поверхности наносят тонкий накрывочный слой и затирают его, окончательно отделывают лузги и усенки, заделывают места, поврежденные при производстве специальных работ.

Особенности выполнения декоративной и специальной штукатурок. Декоративная штукатурка от обычной отличается фактурой и цветом. Разнообразие фактур достигается подбором состава раствора, способом его нанесения и последую­щей обработкой отделочного слоя. Для получения декоративных штукатурок, например, при отделке фасадов зданий, используют различные инструменты и приспособления, выбор которых зависит от требуемой фактуры поверхности штукатурки.

Лицевые слои таких штукатурок выполняют из специальных, как правило, цветных, растворов соответствующими приемами. При этом применяют цвет­ные цементы, мраморную муку и крошку, слюду, щелочеустойчивые пигменты, а также недорогие и недефицитные местные материалы: гравий, щебень, песок, бой кирпича и черепицы, стекла и т. д. Основные виды декоративной штукатур­ки: известково-песчаная цветная; терразитовая; каменная штукатурка под мелкозернистый песчаник, под гранит или под мрамор; многоцветная — сграф­фито.

Наиболее распространенными из всех декоративных штукатурок являются известково-песчаные цветные. Для известково-песчаных штукатурок применя­ют растворы, содержащие известь, в небольшом количестве цемент (гидравли­ческая добавка), песок с зернами различной крупности и пигмент, обеспечива­ющий необходимые цвет и тон штукатурки. На подготовительный слой грунта из обычной штукатурки, выдержанный и нацарапанный, наносят цветную накрывку в 2—3 приема с толщиной слоя от 5 до 15 мм.

Известково-песчаные штукатурки обрабатывают в полупластичном или пла­стичном состоянии. По окрепшему раствору после схватывания нанесенный

известково-песчаный цветной раствор затирают терками или заглаживают гла­дилками. Штукатурка может быть затертой, т. е. гладкой без какого-либо релье­фа, или обработанной под какую-либо фактуру (рельефный рисунок). Фактуру придают циклями с зубьями разных профилей высотой не более 3 мм, гвоздевы­ми щетками, штампами и др. Для образования рисунка (квадрат, прямоуголь­ник, круг) можно пользоваться обычными или фасонными правилами или кру­гами различной формы, располагая их согласно заданному рисунку.

При отделке по пластичному раствору в зависимости от фактуры и способа ее получения применяют раствор большей или меньшей пластичности. С помощью штампов, валиков и циклеванием получают фактуру в виде крупных бросков, борозд (с каннелюрами), «под волны», «под травертин», «под валуны», «под дюны», «под губку» и др.

Тсрразитовые штукатурки (вид сколотого камня), выполняют на более жестких, чем известково-песчаные, растворах, приготавливаемых из сухих терразитовых смесей. Они содержат вяжущие вещества (гашеную известь с добавкой цемен­та), наполнители (мраморную муку или крошку, слюду) и пигменты. Цемент добавляют, чтобы раствор не осыпался при ударной обработке. Эти штукатурки чаще всего обрабатывают в полузатвердевшем состоянии (слой терразитового раствора слегка схватится) циклеванием, срубанием раствора или обработкой бучардами (металлическими четырехгранными молотками, две ударные поверх­ности которого покрыты пирамидальными зубцами).

Каменные штукатурки выполняют на растворах, содержащих белый или обыч­ный серый цемент с добавкой не более 5% известкового теста (пластифициру­ющая добавка), кварцевого, мраморного, туфового или других чистых песков и крошки издробленного природного камня, соответствующих по цвету и твер­дости пород, и пигментов. Эти штукатурки более жесткие, чем терразитовые, их обрабатывают чаще всего в затвердевшем состоянии (через 6—8 ч после на­несения) наковкой бучардами, зубилами, зубчатками или травлением кисло­той. В пластичном состоянии их можно штамповать или прокатывать валика­ми с последующей химической или механической обработкой (кислотой, цик­лями, стальными щетками, бучардами). От травления кислотой чаще всего получают штукатурки «под шубу», «под гранит», при этом сухие краски (пиг­менты) не применяются.

Штукатурки сграффито — многоцветные, состоящие из нескольких слоев раз­личных цветов толщиной от 0,5 до 5 мм. Этим способом создают рельефные кра­сочные орнаменты и сюжетные рисунки. Раствор приготавливают из известко­вого теста и мелкозернистого кварцевого песка или известкового теста с добав­кой цемента и кварцевого песка. Контуры изображения наносят с помощью трафаретов или без них на слегка схватившийся раствор и не позднее чем через 5—6 ч после нанесения снимают его на разную глубину выцарапыванием с помо­щью ножей, скальпелей, резцов, так что обнажаются слои разных цветов. Сграф­фито можно выполнять более простые орнаменты по шаблонам (формам и лека­лам) или трафаретам приемами малярной отделки.

Специальные штукатурки используют для улучшения определенных свойств оштукатуриваемых конструкций.

Теплоизоляционная штукатурка отличается от обычной грунтом. Его делают на легких заполнителях — перлите, молотой пемзе, туфе или шлаке с такой же плотностью (400 кг/м3 и’ниже). Это обеспечивает улучшение теплотехнических и звукоизоляционных свойств.

При создании акустических (звукопоглощающих) штукатурок работы выпол­няют также обычными способами, повышение звукоизолирующей способности обеспечивается нанесением на незатвердевший грунт слоя толщиной 20—25 мм из раствора, приготовленного на цементном вяжущем с пористым заполните­лем (например, дробленой пемзой, шлаком и др.). Слой из акустического раствора не затирают.

Для повышения водонепроницаемости штукатурного покрытия применяют гидроизоляционные растворы. В них вводят церезит, хлорное железо, алюминат натрия, жидкое стекло или кремнийорганические гидрофобизующие жидкости и др. Слой церезитовой штукатурки толщиной в 2 см обеспечивает гидроизоля­цию сырых подвалов и неглубоких резервуаров. Работы производят обычным способом, последовательно нанося необходимое число слоев цементного раство­ра. Лучший результат достигается при производстве штукатурных работ мето­дом торкретирования. Растворы на жидком стекле быстро схватываются, их на­до готовить небольшими порциями. Они дают водонепроницаемую кислотос­тойкую штукатурку, но не защищают от воздействия фтористых соединений и фосфорной кислоты.

Для водонепроницаемых штукатурок добавкой может служить и алюминат натрия, но это вещество раздражающе действует на кожу, слизистые оболочки. Поэтому используют его крайне редко, при этом соблюдая целый ряд обязатель­ных требований техники безопасности. Эффективно применение растворов с полимерными добавками. Они отличаются повышенной плотностью, хорошо сопротивляются химически агрессивным воздействиям.

Штукатурка может служить защитой от рентгеновских излучений, например при изоляции рентгеновских кабинетов. В этом случае в цементный или слож­ный тяжелый раствор плотностью 2200 кг/м3 добавляют баритовый песок, бари­товую пыль. Баритовая штукатурка толщиной 14—16 мм эквивалентна свинцо­вому листу толщиной 1 мм.

Производство работ в зимних условиях. Контроль качества и техника безопасности.

Наружные штукатурные работы выполняют, как правило, в теплое время года. Штукатурные работы в зимнее время производят при действующих постоянных системах отопления и вентиляции. Приготовление, транспортирование и хра­нение штукатурных растворов в зимних условиях должно быть организовано та — ким образом, чтобы доставленный на рабочее место раствор имел температуру в момент нанесения его на оштукатуриваемые поверхности не ниже 8 °С.

Наружные штукатурные работы по отделке фасадов зданий при температуре воздуха ниже +5 °С производят с использованием растворов, содержащих хими­ческие добавки и понижающих температуру замерзания раствора (хлористый кальций, хлористый натрий, хлорная известь, поташ), или растворов, приготов­ленных на молотой негашеной извести. Наружные работы по оштукатуриванию поверхностей растворами с химическими добавками разрешаются при темпера­турах до —15 °С включительно.

При применении добавок, вводимых для понижения температуры замерзания растворов, особое внимание необходимо уделить соблюдению правил техники безопасности и пожарной безопасности.

При приемке штукатурных работ проверяется выполнение следующих тре­бований:

♦ штукатурка должна быть прочно соединена с поверхностью оштукатурен­ной конструкции и не отслаиваться от нее;

♦ оштукатуренные поверхности должны быть ровными, гладкими, с четки­ми гранями углов пересекающихся плоскостей, без следов затирочного ин­струмента, потеков раствора, пятен и высолов, неровностей поверхности глубиной или высотой до 3 мм при отделке улучшенной штукатуркой и до 2 мм при отделке высококачественной штукатуркой при накладывании правила или шаблона длиной 2 м должно быть не более двух;

♦ трещины, бугорки, раковины, дутики, грубошероховатая поверхность и пропуски не допускаются.

Все оконные, дверные и другие проемы до начала отделочных работ должны быть ограждены. Рабочие, ведущие обработку поверхностей с помощью удар­ных инструментов (зубил, бучард), должны работать в рукавицах и обязательно в защитных очках.

Для защиты рук при штукатурных работах следует пользоваться биологи­ческими перчатками (защитные мази или кремы), вазелином, глицерином или специальными пастами.

При просушивании оштукатуренных помещений нельзя пользоваться откры­тыми жаровнями и мангалами и оставлять их без присмотра.

РАБОТЫ ПО УСТРОЙСТВУ ОТДЕЛОЧНЫХ ПОКРЫТИЙ

Отделочные работы — строительные работы по отделке зданий и сооружений с целью повышения их эксплуатационных, эстетических качеств и стойкости про­тив атмосферных и других воздействий. К отделочным работам относятся шту­катурные, облицовочные, малярные, лепные, обойные, стекольные, а также ус­тройство полов, которые представляют самостоятельную группу материалов и изделий и рассматриваются в главе 14:

Отделочные материалы и изделия подразделяют на две группы: для наружной отделки зданий и сооружений и для внутренней отделки помещений и элемен­тов интерьера. Некоторые материалы используют и в наружной и во внутренней отделке зданий (например, лицевую и облицовочную керамику, облицовку из природного камня, ряд изделий из стекла и асбестоцемента, силикатные краски и краски на основе синтетических смол).

До начала отделочных работ должны быть произведены следующие меропри­ятия:

♦ отделываемые помещения защищены от атмосферных осадков;

♦ швы между блоками и панелями загерметизированы;

♦ места сопряжений оконных, дверных и балконных блоков заделаны и изо­лированы;

♦ световые проемы остеклены;

♦ закладные изделия смонтированы;

♦ системы тепло-, водоснабжения и отопления испытаны;

♦ по перекрытиям устроены гидро-, тепло-, звукоизоляция и выравниваю­щие стяжки.’

Контроль качества и обеспечение безопасности труда при производстве кровельных работ

Материалы, применяемые для кровельных работ, должны удовлетворять тре­бованиям действующих государственных стандартов и техническим условиям на их изготовление. На них должен иметься паспорта.

При устройстве кровель из рулонных и мастичных материалов производят промежуточную проверку с приемкой отдельных законченных элементов (па — роизоляции, теплоизоляции, стяжки, грунтовки и обделки мест примыканий) и окончательную приемку кровли в целом. Промежуточной приемке подлежаттак — же отдельные слои гидроизоляционного ковра. Кровли из штучных материалов принимают только в законченном виде.

Грунтовка должна иметь прочное сцепление с основанием, на приложенном к ней тампоне не должно оставаться следов вяжущего. При контроле качества осно­ваний проверяют соответствие проекту материалов, уклонов, расположения во­досточных колонок и др. Поверхность основания должна быть ровной и жесткой.

Узлы конструкций примыканий выполняются гладкими и ровными, без ост­рых углов. Части водоприемной колонки внутренних водостоков не должны вы­ступать над поверхностью основания, а водосточные трубы должны быть проч­но соединены между собой.

Прочность приклеивания рулонного материала проверяют медленно, отрывая один. слой от другого. Разрыв образца (не менее чем наполовину) должен прохо­дить по рулонному материалу. В водоизоляционном ковре из рулонных и мас­тичных материалов не должно быть внешних дефектов, разрывов, трещин, вмя­тин, вздутий (пузырей, воздушных мешков), проколов и пробоев, губчатого стро­ения, потеков и наплывов расслоений, а также отслоений в местах нахлесток. При их обнаружении эти места вырубаются и заделываются вновь. Не допуска­ется отклонение от проектного числа усилительных (дополнительных) слоев кровли в местах примыкания.

При устройстве кровельных покрытий оплавлением битуминозного слоя ру­лонов открытым пламенем необходим тщательный контроль, так как при пере­жоге битум горит и основа прогорает, а при недогреве происходит вздутие ковра.

При контроле качества мастичной кровли проверяют толщину гидро­изоляционного ковра и прочность его сцепления с основанием.

Кровельные покрытия из штучных материалов должны без видимых просве­тов (при осмотре из чердачных помещений) прилегать к обрешетке. У асбесто­цементных листов, плиток и других штучных материалов не должно быть отко­лов, трещин и коробления. Обязательной проверке подлежит выполненная про­мазка фальцев в соединениях металлических картин.

Водонепроницаемость кровли проверяют после дождя. Плоские кровли (с уклоном до 3%) можно проверить, поливая их водой при закрытых воронках.

Приемка готовой кровли оформляется актом с выдачей заказчику гаран­тийного паспорта.

Обеспечение безопасности труда при производстве кровельных работ. Работы по устройству кровель разрешается начинать после проверки исправности несущих и ограждающих конструкций крыши, подмостей и ходовых мостиков. При обле­денении кровли, ливневом дожде, густом тумане, сильном снегопаде и ветре (ско­рость 15 м/с и более) кровельные работы выполнять запрещается.

При работе на крышах с уклоном более 20° и на краю крыш с любым уклоном рабочие обязательно должны пользоваться предохранительными поясами.

При складировании на крыше материалов необходимо применять меры про­тив их соскальзывания и сдувания ветром. По окончании смены все материалы и

инструменты убирают или надежно закрепляют. Сбрасывать с кровли материа­лы и инструменты запрещается, а зона их возможного падения должна быть ог­раждена.

При работе с мастиками с их поверхности выделяются токсические вещества (оксиды углерода и азота, сернистый ангидрид), которые при высокой концент­рации могут оказывать вредное действие на организм работающих. Наиболее высокая концентрация этих веществ наблюдается при разогреве мастики.

Кровельщики должны быть обеспечены спецодеждой и спецобувью на мас — лобензостойкой подошве. При разогреве битумной мастики в котлах-термосах кровельщик может применять респиратор универсальный или респиратор про­тивогазовый. Для защиты кожного покрова рекомендуются противопековая па­ста и биопаста, которые втирают в кожу равномерным слоем перед началом ра­боты и после приема пищи.

Особую осторожность необходимо соблюдать при изготовлении и нанесении горячих мастик. Битумоварочные котлы запролняют не более чем на 3/4 их объема и закрывают крышками. При нанесении мастики рабочий должен находиться с подветренной стороны. Переносить горячие мастики в бачках по стремянкам и лестницам категорически запрещено.

К работам на бысоте относятся те, которые ведутся на высоте более чем 1,5 м от поверхности грунта, перекрытия или рабочего настила. Для подмащивания запрещается пользоваться случайными предметами (бочки, ящики).

Организаторы производства и рабочие часто не учитывают повышенной опасг ности при работе на асбестоцементных кровлях, связанной главным образом с низкой механической прочностью этого материала.

Страховочную веревку следует привязывать только к стропилам или балкам, но не к дымовым трубам. Веревка должна быть новой, толщиной в 1—2 пальца. Кроме того, при уклоне кровли более 25°, а также при работе на мокрой или по­крытой снегом кровле с любым уклоном необходимо использовать переносные стремянки шириной не менее 300 мм с нашитыми планками. Такие же стремян­ки укладывают д ля хождения по асбестоцементным кровлям.

При работе на неукрепленных приставных лестницах и стремянках присте­гивать к ним предохранительные пояса запрещается. Перед тем как подняться на лестницу, надо обязательно проверить ее прочность и устойчивость.

При работе разрешается пользоваться только лестницами, изготовленными из древесины хвойных пород без пороков (сучков, трещин и др.). Для устойчи­вости лестница должна расширяться книзу и иметь в зависимости от вида опор­ной поверхности металлические наконечники или упоры из резины. Высота при­ставной лестницы должна быть не более 5 м, стремянки — не более 3,5 м. Ступе­ни врезаются в тетивы и скрепляются на шипах. Тетивы лестниц высотой более 3 м скрепляются стяжными болтами через 2 м, а тетивы стремянок — через 1,5 м. Запрещается работать, стоя на ступенях лестницы (стремянки), расположенных на расстоянии менее 1 м от ее верха.

Вопросы для самопроверки

1. Какие факторы влияют на выбор вида кровли и кровельных материалов?

2. Как делаются кровли из асбестоцементных волнистых листов (шифера)?

3. Как делаются кровли из черепицы из натуральных материалов?

4. Как делаются кровли из асбестоцементных плоских плиток?

5. Как устраивается кровля из кровельной стали?

6. Как устраиваются кровли из металлического профилированного настила?

7. Как выполняются кровли из металлочерепицы, волнистых и профилированных ме­талл ическихл и стов?

8. Как устраиваются кровли из рулонных материалов?

9. Как устраиваются мастичные (безрулонные) кровли?

10. Каковы особенности производства кровельных работ в зимних условиях?

Тест

1. Верхняя ограждающая конструкция здания, выполняющая несущие, гидроизоли­рующие, а при бесчердачных (совмещенных) крышах и теплых чердаках, еще и тепло­изолирующие функции:

а) крыша (покрытие);

б) стена;

в) перегородка;

г) перекрытие.

2. Каждый волнистый асбестоцементный лист крепится к обрешетке:

а) кляммерами;

б) противоветровыми кнопками;

в) тремя шиферными гвоздями длиной 100 мм с антикоррозионной шляпкой или шурупами;

г) специальными крепежными элементами типа «крюк».

3. Крепление черепицы к обрешетке выполняют:

а) проволочными скрутками и, при необходимости, кляммерами;

б) противоветровыми кнопками;

в) специальными крепежными элементами типа «крюк»; .

г) болтами.

4. Рядовые асбестоцементные плитки крепят к основанию:

а) проволочными скрутками и, при необходимости, кляммерами;

б) противоветровыми кнопками;

в) специальными крепежными элементами типа «крюк»;

г) двумя оцинкованными гвоздями и противоветровой кнопкой.

5. Стальные листы кровель из кровельной стали соединяют между собой:

а) кляммерами;

б) фальцами;

в) специальными крепежными элементами типа «крюк»;

г) гвоздями.

6. К обрешетке картины из кровельной стали крепят:

а) кляммерами;

б) фальцами;

в) специальными крепежными элементами типа «крюк»;

г) гвоздями.

7. Крепление металлочерепицы к обрешетке выполняют:

а) кляммерами;

б) самонарезающими шурупами;

в) специальными крепежными элементами типа «крюк»;

г) гвоздями.

8. Перекрестная укладка основных слоев водоизоляционного ковра многослойных кровель:

а) допускается;

б) допускается при уклонах кровли до 15%;

в) не допускается;

г) не допускается, за исключением кровель площадью более 100 м2.

9. Кровли из штучных материалов принимают:

а) по фактической площади;

б) поэлементно;

в) только в законченном виде;

г) после сдачи объекта в эксплуатацию.

10. При работе на крышах с уклоном более 20° и на краю крыш с любым уклоном ра­бочие должны:

а) пройти повторный инструктаж;

б) пользоваться предохранительными поясами;

в) работать в теплой одежде;

г) иметь защитное ограждение.

Ключ

1

2

3

4

5

6

7

8

9

10

а

в

а

г

б

а

б

в

в

б

Укладка арматуры и бетонной смеси в формы

Арматурный каркас устанавливают в форму так, чтобы он не менял своего положения при вибрировании. Между арматурой, поддоном и стенками формы оставляют зазоры для защитного слоя, необходимая толщина которого выдерживается установкой под арматуру бетонных подкладок. Толщина защитного слоя наз­начается проектом и для различных сборных изделий колеблется от 10 до 80 мм.

Рис. 101. Схема самоходного бетоноукладчика с неподвижным бункером вмести­мостью 1 мэ:

1 — буккер, 2 — редуктор, 3 — вибратор, 4 — штурвал, 5 — колесо, 6 — тележка, 7 — цепная передача, 8 — площадка, 9 — рама, 10 — электродвигатель

Одновременно с укладкой арматуры устанавливают монтажные петли, необходимые для строповки изделия.

На установках простейшего типа заполнять формы бетонной смесью можно с транспортных средств, но наиболее эффективно применять специальные бетоноукладчики, распределяющие бетон­ную смесь по форме.

Бетоноукладчик представляет собой самоходную тележку, дви­жущуюся по рельсам, между которыми установлены формы для изделий. При изготовлении относительно узких изделий шириной до 1—1,5 м применяют бетоноукладчики с неподвижным бункером (рис. 101), при большей ширине изделий — с бункером, перемеща­ющимся в направлении, перпендикулярном движению бетоноук­ладчика. Тележка 6 бетоноукладчика приводится в движение от электродвигателя 10 посредством редуктора 2 и цепной передачи 7.

Бункер 1 бетоноукладчика загружают бетонной смесью непо­средственно из бетоносмесителя или с помощью автопогрузчика, бадьи и другими способами. Для улучшения разгрузки бункер обо­рудован вибратором 3. Затвором бункера управляют вручную штурвалом 4. Производительность бетоноукладчика достигает 12 м3/ч.

МЕХАНИЧЕСКИЕ И РУЧНЫЕ СТАНКИ ДЛЯ РЕЗКИ. И ГНУТЬЯ ТЯЖЕЛОЙ АРМАТУРЫ

С помощью ручных пресс-ножниц можно резать стержни арма­туры диаметром не более 20 мм. Резание стержней большего диа­метра (до 40 мм) или пакетов стержней меньших диаметром про­изводится на приводном станке С-150А (рис. 128), а стержней диаметром свыше 40 мм — газовой резкой.

Рабочей частью станка С-150А являются два ножа — подвиж­ный и неподвижный. Неподвижный нож крепится болтами в гнез­де станины, а подвижный закреплен в ползуне, совершающем по­ступательно-возвратные движения. Перерезаемый стержень за­кладывают между кромками ножей в момент их наибольшего расхождения. Сущность процесса резки состоит в том, что перво­начально сталь сминается (при вдавливании в нее заточенных под углом кромок ножей), затем вдоль плоскости среза появляется трещина и стержень переламывается. Необходимо следить за со­стоянием ножей, так как работа затупленными ножами с выкро­шившимися кромками может привести к порче станка.

Станок обслуживают два арматурщика 5 и 3-го разрядов. Схе­ма организации рабочего места приведена на рис. 129. Между станком 1 и столами 2 и 6 оставляется проход шириной 40 см. Ряды роликовых столов 2—5 и 6—9 разной высоты и ширины устанавливают на расстоянии 1 м друг от друга и соединяют на­клонными поперечинами.

Предназначенные для резки прутья укладывают первоначаль­но на столы 2—5, откуда по мере надобности по поперечинам пе­редвигают на столы 6—9, имеющие мерную рейку и упор (см. рис. 119). Деление рейки отсчитывают от кромки неподвижного ножа.

Арматурщик 5-го разряда, находясь у станка, закладывает между ножами разрезаемые прутки. Арматурщик 3-го разряда,

установив перед началом работы в нужном месте упор, подает по роликовым столам арматурные прутья для резки.

Техническая характеристика станка С-150А приведена в табл. 25.

Станочник при работе на станке обязан соблюдать правила техники безопасности. Перед началом работы необходимо прове­рить состояние станка, исправность пусковых и тормозных при­способлений, наполнение масленок и правильность установки но­жей провертыванием шкива вручную.

Болты, крепящие нож в станине, надо регулярно осматривать Е подкручивать до отказа.

Для продления срока работы ножей и равномерного пзноса рекомендуется каждую неделю менять их местами, ставя подвиж-

ный нож на место неподвижного и наоборот. При тщательной

сортировке прутьев и правильном подборе их на складе расход стали на обрезки не должен превышать 1,5%; обрезки рекомен­дуется использовать при сварке для наращивания коротких стержней.

Таблица 25

Техническая характеристика станка С-150А

Показатели

Наибольший диаметр перерезаемых стерж­ней в MJ? л

Число резов в минуту…………………………………………..

Мощность электродвигателя в кет . . . .

Число об/мин…………………………………………………………

Длина станка в мм………………………………………………..

Ширина „ ……………………………………………

Высота „ ……………………………………………

Вес в кг……………………………………………………………………

Число одновременно разрезаемых стерж­ней из стали Ст. О и Ст. 3

диаметром 10 — 12 мм…………………………………………

14-16 я……………………………..

18-22 ……………………………………………………………..

, более 22 мм…………………………………… . . .

Гнутье тяжелой арматуры диаметром до 40 мм производится на приводном стайке С-146 (рис. 130).

Механизм станка состоит из двигателя 1, на вал которого на­сажено зубчатое колесо 2, имеющее сцепление с другим зубчатым колесом 3. Колесо 3 имеет сцепление с зубчатым колесом червяч­ного редуктора 4, которое приводит в движение большое зубчатое колесо 5, насаженное на вертикальный рабочий вал 6. На верхнем конце рабочего вала, выпущенном поверх плиты, закреплен рабо­чий диск 7.

По бокам диска имеются две поперечные планки с отверстиями для сменных упоров.

Изменение скоростей вращения достигается перестановкой сменных зубчатых колес 2 и 3.

Рабочий диск показан на рис. 131.

Техническая характеристика станка С-146 приведена в табл. 26.

В настоящее время выпускается модель станка С-146А, имею­щая некоторые конструктивные отличия от модели С-146, но по­строенная* по тому же принципу.

Станок С-146 обслуживает звено рабочих, состоящее из двух арматурщиков 5 и 3-го разрядов. Организация рабочего места у станка С-146 показана на рис. 132. На роликовые столы 4 и 5 по­ступают прутья от станка для резки. Поперечины 6 имеют уклон от столов 4 и 5 к более низкому роликовому столу 2, чго облегчает 156

подачу нарезанных стержней к станку С-146. Арматурщик 3-го разряда (подсобный рабочий), находясь в проходе справа от ста­ночника (арматурщика 5-го разряда), подает стержни на ролико­вый стол 2, придерживает стержни, пока станочник загибает один конец стержня. Затем подсобный рабочий передвигает стер-

б)

Рис. 130. Приводной станок С-146 для гнутья тяжелой арма­туры:

а — общий вид; б — разрез

жень на роликовый стол 3, чтобы станочник мог загнуть второй конец. Если количество арматуры, заготовляемой за смену, пре­вышает 10 г, то необходим второй подсобный рабочий. Б этом слу­чае второй подсобный рабочий находится с другой стороны станка и принимает на стол 3 изготовленные арматурные стержни, отку­да их грузят на вагонетки и отвозят на склад готовой арматуры.

вают специальный упор, как это показано на рис. 133.

Работа на станке С-146 во многом подобна работе на станке НЗ-4. В качестве при­мера на рис. 134 приведена последовательность опера­ций по гнутью стержня ра­бочей арматуры с двумя от­гибами. В то время, как стоя­щий слева от станка рабочий снимает с роликового стола на тележку готовый загну­тый стержень, станочник с помощью рабочего, стоящего справа, закладывает один из концов следующего стержня между осевым и изгибающим пальца­ми (рис. 134, а).

При повороте диска на 180° загибается первый крюк (рис. 134,6). Для освобождения стержня, зажатого между двумя пальцами, станочник останавливает диск и дает короткий обрат­ный ход. Затем стержень продвигается по станку дальше до места — первого отгиба.

Опыт работы новаторов-арматурщиков показал, что в разметке всех нарезанных стержней нет надобности. Достаточно разметить места отгибов (в соответствии с биркой) лишь на одном стержне и при гнутье его разметку перенести на мерную рейку станка. За начало делений мерной рейки принимают центр диска и деления отсчитывают от нуля в каждую сторону станка. Длину стержня, необходимую для загиба крюка, станочник обязан знать на па­мять.

Гнутье двух отгибов стержня (так называемой «утки») про­изводится под углом 45° одинаковыми, но направленными в раз­ные стороны движениями диска (рис. 134, виг). После загиба

Наибольший диаметр изгибаемой стали

в мм………………………………………………………………………

Число об/мин диска при гнутье арматуры*

диаметром 19—40 мм………………………..

— 12-14 ………………………………

, 6-10……………………………………………..

Мощность электродвигателя в кет….

Число об/мин электродвигателя………………………..

Длина станка в мм…………………………………..

Ширина, »

Высота „

Вес (с электродвигателем) в кг…………………………..

Число одновременно загибаемых стержней из стали Ст. 0 и Ст. 3

диаметром 6 мм……………………………………….

8………………………..

10 …………………………………………..

12 …………………………………………..

14 …………………………………………..

19……………………………………………

27 ……………………………………………

32 …………………………………………..

40……………………………………………

первой утки гнется второй крюк (рис. 134, д) и в последнюю оче­редь гнется вторая утка (рис. 134, ей ж).

Если гнется стержень без уток, а только с крюком, то при на­личии на станке мерной рейки необходимость в разметке вообще отпадает.

В том случае, если при гнутье стержня арматуры требуется отгиб (утка) небольшой высоты, гнутье может быть произведено за один прием (рис. 135). При этом осевой палец с диска снимают, а в противоположных гнездах диска по диагонали устанавливают два изгибаю­щих пальца и два упорных ролика.

Прутья кладут вдоль продольной оси станка посредине диска. При небольшом повороте диска получается отгиб требуе­мой формы.

При одновременном гнутье несколь­ких стержней необходимо, чтобы все они во время загиба находились в одной вер­тикальной плоскости. С этой целью эф­фективно применение специальных дер­жателей, предложенных арматурщи­ком В. В. Кобяковым. На рис. 136 по­казан общий вид такого держателя и способ его применения.

Для крупных железобетонных соору­жений, например судоходных шлюзов,

применяют арматуру больших диаметров — до 90 мм. Гнутье такой арматуры производит­ся на станке С-266 (рис. 137), имеющем два рабочих гибочных диска, из которых мень­ший предназначен для гнутья стержней диамет­ром до 40 мм, а боль­ший — до 90 мм.

Одновременно может работать только один из дисков. По достиже­нии заданного угла за­гиба стержня диск авто­матически останавли­вают. Управление стан­ком производится при помощи магнитного пускателя.

Мощность электродвигателя 10 кет при 1455 об/мин. Габарит­ные размеры станка: длина 3180 мм, ширина 1645 мм и высота 1060 мм. Вес с электродвигателем 4295 кг.

II Л. С. Торопов 161

Гнутье тяжелой арматуры вручную применяю! лишь в виде исключения при малом объеме работ и полной невозможности при­менения приводных станков. На рис. 138 показан ручной станок для гнутья тяжелой арматуры. При длине рычага, равной 1,50 м, на станке можно гнуть арматуру диаметром до 25 мм. Арматуру

закладывают между осевым и изгибающим пальцами и упором. По принципу действия станок подобен ручным станкам для гнутья легкой арматуры.

Для сокращения транспортных операций целесообразно резку и гнутье арматуры объединять в один поток. На рис. 139,а пока­зан пример такого объединения. У приводного станка для резки устанавливают спаренный роликовый стол. Со стороны узкоко­лейки к роликовым столам примыкают козелки. Арматурную сталь, предназначенную для резки, подвозят на удлиненной ваго­нетке и складывают на козелки. С козелков стержни сдвигают на роликовый стол, а затем производится их резка. Отрезанный стер­жень перекладывают на укороченную часть спаренного роликово­го стола, по которому стержень передвигается к станку для гнутья арматуры. По обе стороны этого станка установлены ши­рокие роликовые столы. Стержень с козелков передают на стол,

где производится разметка стержня; подсобный рабочий передви­гает стержень к станку для гнутья. Одновременно делается от­метка на станине станка и роликовых столах, которая позволяет гнуть следующие стержни без разметки. Заготовленные стержни укладывают на удлиненную

вагонетку и транспортируют на склад или к месту сборки арматурных каркасов. На рис. 139, б показана схема рабочего места, предложен­ная арматурщиком В. А. Ми — ронцом, а на рис. 140 — ре­конструированный им роли­ковый стол.

Прутья для разметки по­даются на роликовый стол, укладываются параллельно друг другу и упираются в вертикальную пластинку ог­раничителя. При помощи Г-образной рукоятки арма­турщик поворачивает шток вокруг его оси, одновременно укладывая тем самым все разметочные линейки попе­рек ряда стержней. Проводя мелом вдоль линеек 4, арма­турщик размечает на стерж­нях места отгибов. Поворотом рукоятки штока все линейки от­кидываются и принимают вертикальное положение, а размеченные прутья сдвигаются на козлы и на их место укладывается следую­щая партия стержней, подлежащих разметке. Разметка стержней не по одиночке, а пачками повышает производительность труда.

При работе на рабочем месте, организованном по схеме В. А. Миронца, прутья, поданные на вагонетке 1 для резки и гнутья, складываются на козелки 2 и отсюда поступают на спа­ренный роликовый стол 3. При помощи упора-ограничителя 8 прутья разрезаются без разметки на механических пресс-ножни­цах, сдвигаются по спаренному роликовому столу и поступают на стол с разметочным устройством 9. Размеченные прутья склады­ваются на козлы и с них попадают на уширенный роликовый стол 6, с которого производится гнутье первого конца. Гнутье вто­рого конца осуществляется после передвижки прутьев на второй уширенный роликовый стол 6.

Применение предложений Миронца дало на практике повыше­ние производительности на 25—30%.

Допустимые по техническим условиям максимальные отклоне­ния заготовленной арматуры от проектных размеров приведены в табл. 27.

Таблица 27

Допустимые максимальные отклонения заготовленной
арматуры от проектных размеров

Показатели

Отклонения размеров крюков в диаметрах

стержня……………………………………………………………………….

Отклонение длины перепуска стержней в сты­ках внахлестку, вязкой, в диаметрах стержня Отклонение мест отгибов при переходе из нижней зоны в верхнюю в мм……………………………………………………………………………………….

Реклама
Октябрь 2015
Пн Вт Ср Чт Пт Сб Вс
« Сен   Ноя »
 1234
567891011
12131415161718
19202122232425
262728293031  
Рубрики